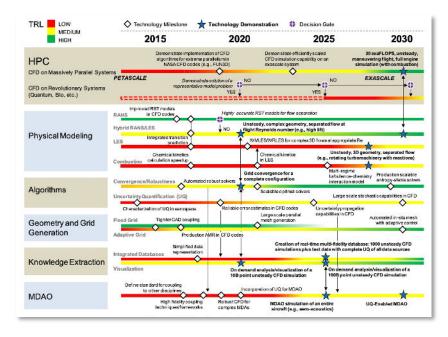


MENO: A Modern, Portable, and Scalable Framework for High-Fidelity Computational Fluid Dynamics

Niclas Jansson, PDC Center for High Performance Computing

Introduction

About 10% of the energy use in the world is spent overcoming turbulent friction



No upper limit in fluid dynamics to the size of the systems to be studied via simulations

Computational Fluid Dynamics is one of the areas with a clear need and **great potential to reach exascale**

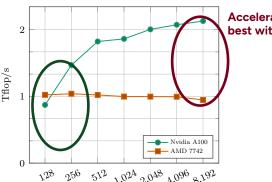
Introduction

- Exascale will require either unreasonably large problem sizes or significantly improved efficiency of current methods
 - Finite-Volume LES of a full car on the entire K computer (京) required **more than 100 billion grid points** to run efficiently
 - What problem size is needed to fill the 379 PFlop/s LUMI...
- High-order methods
 - Attractive numerical properties, small dispersion errors and more "accuracy" per degree of freedom
 - Better suited to take advantage of modern hardware (accelerators)

京: 82944 nodes, 663552 Cores, 10 PFlop/s

Dardel: 56 nodes, 448 MI250X GCDs, ≈10 PFlop/s

CEED BK5, 9th order polynomials



...but we rather scale out our problems...

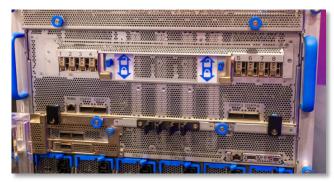
Elements

Accelerators works best with a lot of data!

Top500 List – November 2023

#1 Frontier: 1194 PFlop/s, AMD MI250X

#2 Aurora: 585 PFlop/s, Intel PVC



#3 Eagle: 561 PFlop/s, NVIDIA H100

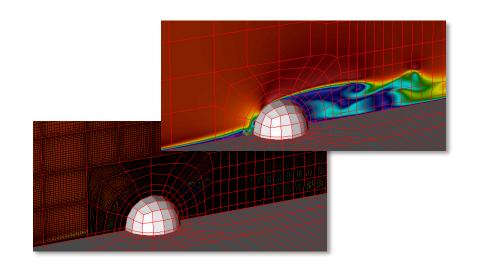
#4 Fugaku: 442 PFlop/s, Fujitsu A64FX

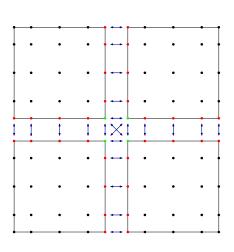
#5 LUMI: 378 PFlop/s, AMD MI250X

#6 Leonardo: 239 PFlop/s, NVIDIA A100

Spectral Elements

- Finite Elements with high-order basis functions
 - N-th order Legendre-Lagrange polynomials $l_i(\xi)$
 - Gauss-Lobatto-Legendre quadrature points ξ_i
 - Fast tensor product formulation
 - $u^e(\xi, \eta, \gamma) = \sum_{i,j,k}^N u_{i,j,k}^e l_i(\xi) l_j(\eta) l_k(\gamma)$
 - High-order at low cost! (Level 3 BLAS!)
- Too expensive to assemble matrices
 - Element stiffness matrices $A_{i,j}^k$ with $O(N^6)$ non-zeros
- Matrix free formulation, key to achieve good performance in SEM
 - Unassembled matrix $A_L = \operatorname{diag}\{A^1, A^2, \dots, A^E\}$ and functions $u_L = \{u^e\}_{e=1}^E$
 - Operation count is **only** $O(N^4)$ **not** $O(N^6)$
 - Boolean gather/scatter matrix Q^T and Q
 - Ensure continuity of functions on the element level $u = Q^T u_L$ and $u_L = Q u$
- Q and Q^T formed, only the action QQ^T is used
 - Matrix-vector product $w = Au \Rightarrow w_L = QQ^TA_Lu_L$

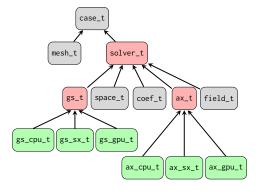




Portable Spectral Element Framework NEKO

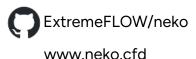
- High-order spectral element flow solver
 - Incompressible Navier-Stokes equations
 - Matrix-free formulation, small tensor products
 - Gather-scatter operationst between elements
- Modern object-oriented approach (Fortran 2008)

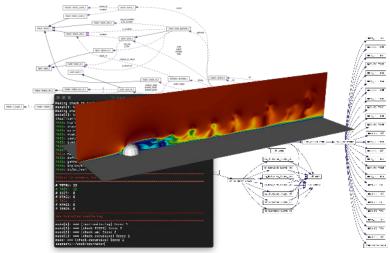
```
! Base type for a matrix-vector product providing Ax type, abstract :: ax_t contains procedure(ax_compute), nopass, deferred :: compute end type ax_t
! Abstract interface for computing Ax abstract interface subroutine ax_compute(w, u, coef, msh, Xh) implicit none type(space_t), intent(inout) :: Xh type(mesh_t), intent(inout) :: msh type(coef_t), intent(inout) :: coef real(kind=dp), intent(inout) :: w(:,:,:) real(kind=dp), intent(inout) :: u(:,:,:) end subroutine ax_compute end interface
```



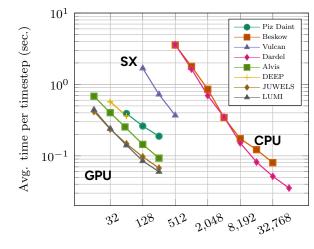
- Various hardware-backends
 - CPUs, GPUs down to exotic vector processors and FPGAs
 - Device abstraction layer for accelerators (CUDA/HIP/OpenCL)
 - Modern software engineering (pFUnit, ReFrame, Spack)

> spack install neko+cuda





Neko, Taylor-Green vortex, Re = 5000



Device Abstraction Layer

How to interface Fortran with accelerators?

- Native CUDA/HIP/OpenCL implementation via C-interfaces
- Device pointers in each derived type

```
type field_t
  real(kind=rp), allocatable :: x(:,:,:) !< Field data
  type(space_t), pointer :: Xh  !< Function space
  type(mesh_t), pointer :: msh  !< Mesh
  type(dofmap_t), pointer :: dof  !< Dofmap
  type(c_ptr) :: x_d = C_NULL_PTR !< Device pointer
end type field_t</pre>
```

- Abstraction layer hiding memory management
- Hash table associating x with x_d
- Kernels invoked from the object hierarchy via C interfaces (Ax, vector ops)
 - Wrapper functions for each supported accelerator backend
 - Templated (CUDA/HIP) or pre-processor macros (OpenCL) for runtime parameters
- Auto/runtime tuning based on polynomial order

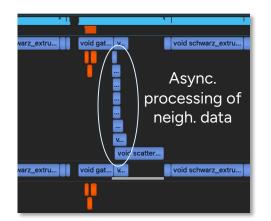
```
src/
|-- math
| `-- bcknd
| |-- cpu
| |-- device
| |-- cuda
| |-- hip
| `-- opencl
| |-- sx
| `-- xsmm
```

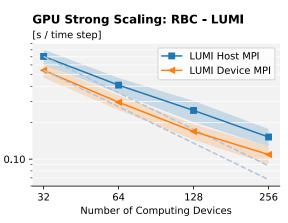
```
!> Enum @a hipError t
enum, bind(c)
  enumerator :: hipSuccess = 0
end enum
!> Enum @a hipMemcpvKind
enum, bind(c)
   enumerator :: hipMemcpyHostToHost = 0
  enumerator :: hipMemcpyHostToDevice = 1
end enum
interface
   integer (c_int) function hipMalloc(ptr_d, s) &
        bind(c, name='hipMalloc')
    use, intrinsic :: iso c binding
     implicit none
    type(c_ptr) :: ptr_d
     integer(c_size_t), value :: s
   end function hipMalloc
end interface
```

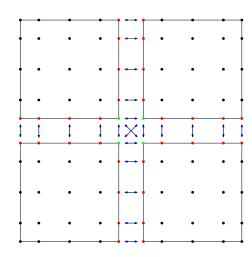
```
subroutine field_init(f,...)
type(field_t) :: f
...
call allocate(f%x(...,...,...,...,)
call device_alloc(f%x_d, size)
call device_associate(f%x, f%x_d)
cudaMalloc
hipMalloc
clCreateBuffer
```


Gather-Scatter

- Uses indirect addressing and are (mostly) non-injective
- Topology aware optimisations
 - Facets (single neighbour), red points
 - Injective, vectorizable (always operating on sorted tuples)
 - Non facets (arbitrary number of neighbours), green points
 - Cannot be made injective, not vectorizable (small amount)
- Multiple levels of overlapping communication and computation
 - Overlapping with non-blocking MPI (device aware)
 - Asynchronous GPU kernels (neighbours in streams)
 - Auto/runtime tuning of all combinations

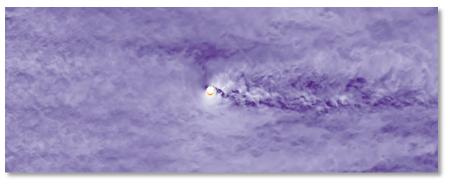


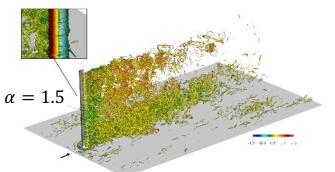


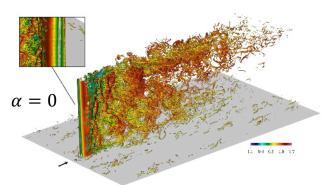


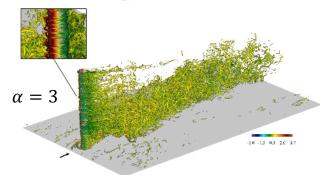
High-fidelity simulation of Flettner rotor

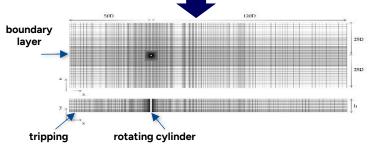
- DNS of the flow around a Flettner rotor at $Re_D=3000\,$ in a turbulent boundary layer, for three different spinning ratios α
- Less than two days on Dardel-G (> two weeks on Dardel-C...)

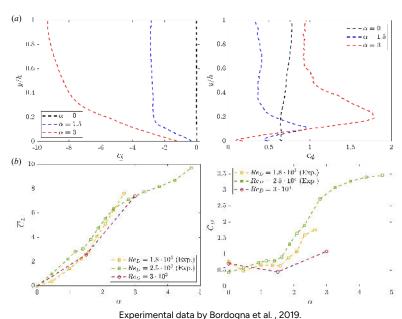












Turbulent thermal convection

- Applications in nature and technology
 - From chip cooling, heat exchanges in power plants, to heat convection in the Earth's mantle and the sun.
- Rayleigh-Bénard convection: Canonical turbulent convection with fundamental open question: **Is there an ultimate regime**, i.e. anomalous scaling of Nusselt number (heat transfer) and Rayleigh number (buoyancy)?
 - Long-standing open issue in turbulence (Kraichnan 1962)
 - Difficult to conduct controlled experiments at high Rayleigh numbers $Ra > 10^{15}$
- Challenges with direct numerical simulations
 - Large computational cost due to resolution needs: $(H/\eta)^3 \sim Ra^{9/8}$
 - Numerical method with minimal dissipative and dispersive errors to capture and track small scales in time
 - Produces unmanageable volumes of data
 - Long integration times for steady state statistics
 - **Efficient implementation** on modern hardware

Illustration of the canonical problem at $Ra = 10^{13}$, iso-surfaces of temperature

Team

Adalberto Perez

Timofey Mukha

Jiahui Liu

Szilárd Páll

Erwin Laure

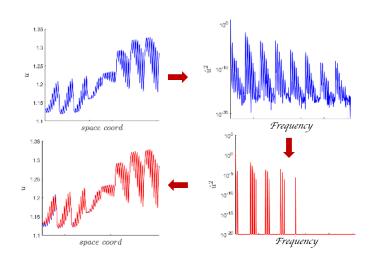
Tino Weinkauf Jörg Schumacher

Philipp Schlatter

Stefano Markidis

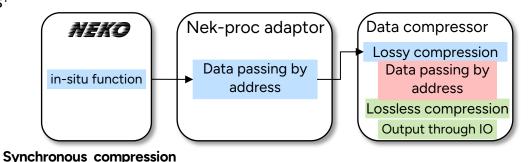
Synchronous and Hybrid Data Compression

 Lossy compression, physics-based method: discard data not associated with the most energetic flow motions¹



• Lossless compression: ADIOS2 operator with runtime configuration

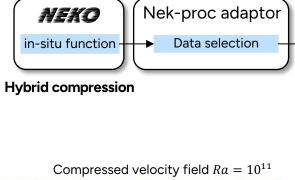
97% data reduction with a relative error of 2.5%



Data compressor

Lossy compression

In-situ approach²



Data compressor
Lossless compression
Output through IO

Rdr-proc adaptor
Data passing by address

ADIOS reader
ADIOS insituMPI reader

Fortran functions

C/C++ functions called in Fortran

Proc-wrtr adaptor

Data passing by

address

C++ functions

ADIOS writer

ADIOS insituMPI

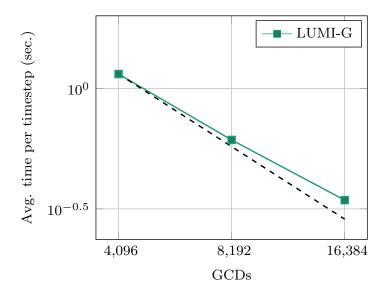
writer

0.2 0.4 0.6 0.8

Performance Baseline

- Full machine runs towards the end of the LUMI-G pilot phase
- DNS of flow past a circular cylinder at Re = 50,000
 - 113M elements
 - 7th order polynomials (8 GLL points)
- Simulation restarted from prebaked low-order runs
 - Restart checkpoint: 453GB
 - Extrapolated to 7th order polynomials
 - Computed solution (snapshot): 1.5TB
- Preliminary results
 - Achieved close to 80% parallel efficiency
 - Using 20%, 40% and 80% of the entire machine

Cylinder Re 50k, 113M el., 7th order poly.



Numerical Method $P_N - P_N$

Time integration is performed using an implicit-explicit scheme (BDFk/EXTk)

$$\sum_{j=0}^{k} \frac{b_{j}}{dt} u^{n-j} = -\nabla p^{n} + \frac{1}{Re} \nabla^{2} u^{n} + \sum_{j=1}^{k} a_{j} (u^{n-j} \cdot \nabla u^{n-j} + f^{n})$$

with b_k and a_k coefficients of the implicit-explicit scheme, solving at time-step n

$$\Delta p^n = \sum_{j=1}^k a_j \left(u^{n-j} \cdot \nabla u^{n-j} + f^n \right)$$

$$\frac{1}{Re} \Delta u^n - \frac{b_0}{dt} u^n = \nabla p^n + \sum_{j=1}^k \left(\frac{b_j}{dt} u^{n-j} + a_j \left(u^{n-j} \cdot \nabla u^{n-j} + f^n \right) \right)$$

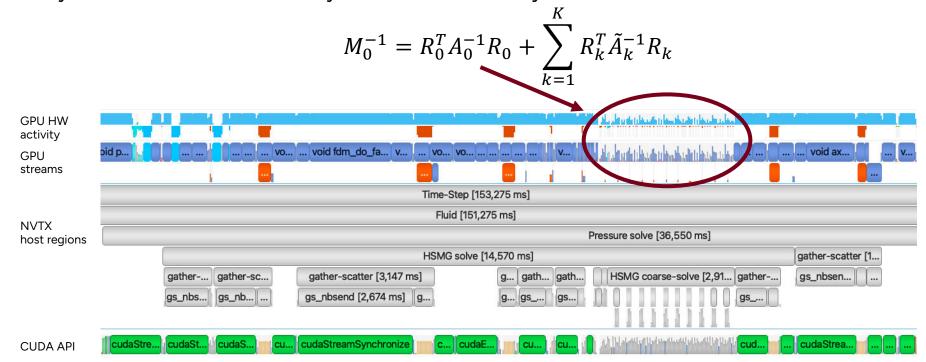
- Three velocity solves using CG with block Jacobi preconditioner (fast)
- One Pressure solve using GMRES with an additive overlapping Schwarz preconditioner (expensive)

$$M_0^{-1} = R_0^T A_0^{-1} R_0 + \sum_{k=1}^K R_k^T \tilde{A}_k^{-1} R_k$$
, key is to have a **scalable coarse grid solver**

Coarse grid (linear elements)

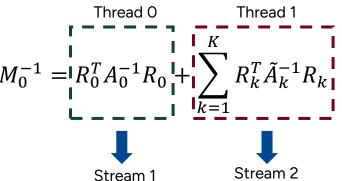
Additive Schwarz Preconditioner on GPUs

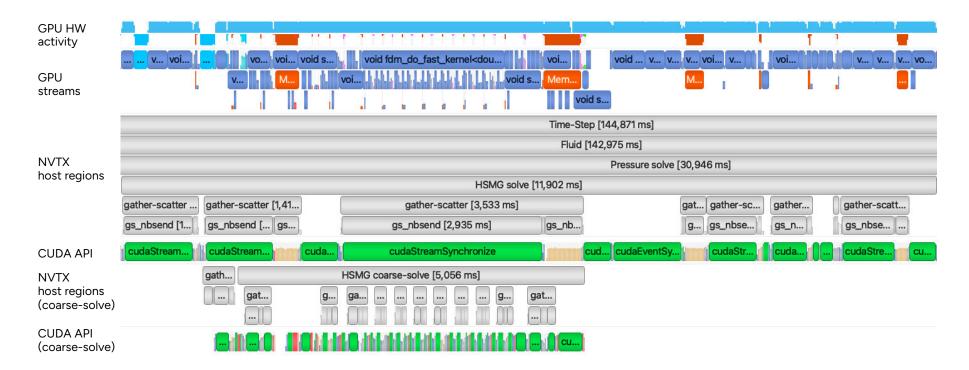
- Coarse grid solved using an approximate Krylov solver
 - Preconditioned Pipelined Conjugate Gradient with a low, maximum iteration limit
- Low computational efficiency on GPUs
 - A_0 is on linear elements, too little data to keep the GPU busy.
 - Many small kernels, dominated by kernel launch latency



Task-decomposed Overlapped Preconditioner

- Exploit available task-parallelism
 - Launch the left and right part of M_0^{-1} in parallel on the device
 - Launch independent work in parallel from different threads in an OpenMP region
 - Launch tasks in separate streams to allow overlap and increase GPU utilization
 - Maximise kernel overlap using stream priority to ensure progress in both stream





Performance Results

- Performance measurements on two of the EuroHPC-JU pre-exascale supercomputers LUMI and Leonardo
- Experiments were performed between
 - March–April 2023 on LUMI
 - April 2023 on Leonardo (pre-production)
- RBC in a cylinder with aspect ratio 1:10
 - $Ra = 10^{15}$
 - 108M elements, 7th order polynomials
 - 37B unique grid points and more than 148B degrees of freedom
- Strong Scalability
 - Average time per timestep (after transient)
- One MPI rank per logical GPU
 - One rank per GCD (AMD)
 - One rank per device (Nvidia)

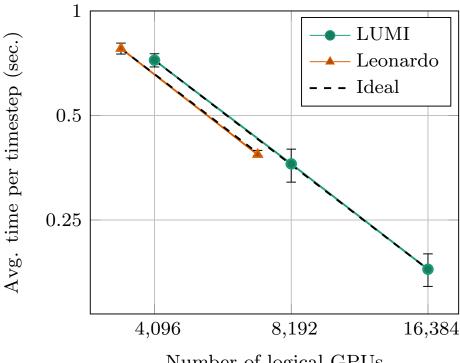
System	LUMI	Leonardo
Computing device	AMD MI250X	Nvidia A100 (custom)
Peak Tflop FP64/s	47.9 (95.7 Matrix)	11.2 (22.4)
Peak BW/s	3300	1640
No. devices	10240	13824
Interconnect	HPE Slingshot 11 200 GbE NICs (4x200 Gb/s)	Nvidia HDR 2x(2x100 Gb/s)
MPI	Cray MPICH 8.1.18	OpenMPI 4.1.4
Compiler	CCE 14.0.2	GCC 8.5.0
GPU Driver	5.16.9.22.20	520.61.05
CUDA/ROCm	ROCm 5.2.3	CUDA 11.8

Performance Results

- Close to perfect parallel efficiency on both LUMI and Leonardo
- Close to perfect parallel efficiency with less than 7000 elements per logical GPU
- Significantly reducing the smallest required problem size for strong scalability limits
- Improvements mainly due to the new overlapped pressure preconditioner

ACM Gordon Bell Prize Finalist 2023

RBC Ra 10^{15} , 108M el., 7th order poly.



Number of logical GPUs

99% confidence intervals is illustrated as error bars

Summary

- High-order methods are essential on current HPC machines
 - More suitable for current hardware and improved accuracy for "free"
- The heterogenous HPC landscape is a nightmare
 - Find a suitable level of abstraction
 - Use the best tools, mix languages and programming models
- Modern software engineering approaches to ensure portability
 - Verification & validation
- Task-decomposed overlapped pressure preconditioner
 - Expressing more of the available concurrency of the application
 - Key ingredient to achieve good strong scalability on LUMI and Leonardo

