
Introduction to Performance Monitoring

Federico Tesser – HPC Specialist
f.tesser@cineca.it

Overview

• Introduction on HPC microarchitectures

• Performance and efficiency of microarchitectures

• Jump into HW performance counters

• A view on Linux Perf

• Roofline model

• Conclusions & Take away messages

2

What they taught to you about computer architecture

CPU: scalar, in order, RISC based, 32bit, short pipeling, single level cache, single threading, single core, single socket
with fixed operating frequency and uniform memory access

3

What it actually is
CPU: superscalar, out of order, multi-level caches,
CISC based (x86), 64bit, multi-threading, many core,
multi socket with dynamic voltage and frequency
scaling and non-uniform memory access

Cascade lake microarchitecture

Cascade lake SoC Layout 4https://en.wikichip.org

Goal: exploit performance
Performance is a result of:

• How many instructions you require to implement an algorithm

• How efficiently those instructions are executed on a CPU

But what does it mean "efficient execution"?

• Scientific view: HPC application Scientific algorithm + data Result

• Computer view: HPC application Set of finite sequences of computer instructions + digital data Result

• Computer performance Higher Instructions Per second/Cycle (IPC) Shorter execution time

• Almost true -> Eg. higher IPC with scalar instructions

• FLoating point Operations Per Second (FLOPS) Better metric

But remember the following three things:

1. It is impossible to reach the theoretical peak performance of a system;

2. Focusing on the optimization of a single performance metric can reduce other performance metrics (trade-off problem);

3. A single performance metric cannot express the overall efficiency of a microarchitecture but we need to consider multiple
metrics;

5

µarch performance events (very few of them)
• Cycles: count the number of cycles

• Instructions retired: count the number of macro instructions executed

• Vector instructions retired: count the number of vector macro instructions

• Branches: count the number of branch taken

• Cache miss/hit (at multiple cache levels): count the miss/hit of the cache references -> it show the locality of the
code

• Memory read/write: number of time that a cache line was read/written from the memory

µarch performance events ≠ performance metrics
• FLOPS: arithmetic operations executed

• Memory throughput: number of bytes exchange with the memory

• IPC: instructions per cycle -> this metric show the macro instruction throughput of the microarchitecture

• Vectorization ratio: percentage of how many vector instructions are retired wrt the total instructions
6

Micro architecture performance optimization

In modern CPUs it is very difficult to understand if my application is
efficiently performing on a specific system (also from an energy point of
view)!

We need HW support from the processor (PMU) -> Only what is measurable
can be improved!

Tools help you to get access to the HW subsystem and automatize routines
but...

Use your brain! Tools may help, but you do the thinking!!!

7

Performance Monitoring Unit (PMU)

The CPU supports you with the PMUs!

A PMU usually support many events (cycles, instructions retired, etc.) through Performance
Monitoring Counters (PMC).

A PMU can be:

• on-core: microarchitecture events at the core level (cycles, instructions retired, ...)

• off-core: microarchitecture events outside of cores (memory read/write, …)

PMCs can be:

• fixed: can be only enabled or disable and profile a specific event

• configurable: can monitor many events

PMCs are usually configurable only at kernels level

Usually, CPUs provide at user space some assembly instructions
with low overhead (see rdpmc()) to read PMCs

8

9

Pmon Uncore blocks

The programming interface of the counter registers and control registers fall into two
address spaces:
• Accessed by MSR are PMON registers within the CHA units, IIO, IRP, PCU, and U-Box.
• Access by PCI device configuration space are PMON registers within the IMC, Intel UPI and

M3UPI units.
Intel® Xeon® Processor Scalable Memory Family Reference Manual

Enter Linux perf

• Official Linux profiler
• Built on top of kernel infrastructure (ftrace)
• Source and docs in kernel tree

• Provides a plethora of profiling/tracing features at all system levels
• user, kernel, CGROUP, etc...

• Most important for us: a comprehensive toolbox to gain workload
execution insights via PMCs

• Low overhead*
• Tunable
• 1-2% counting mode, 5-15% sampling w/multiplexing

* Nowak, Andrzej et al. “Establishing a Base of Trust with Performance Counters for Enterprise Workloads.” USENIX Annual Technical Conference (2015). 10

11

perf stat/record format

$ perf record -a -F 4000 -e L1-dcache-load-misses,L1-dcache-loads -- $APP

action
record (sample), stat (count)

scope
which sources we want to take into account

events
sampling frequency, which events

12

13

MULTIPLEXING AND SCALING EVENTS

• Performance monitoring counters are
present in a fixed number.

• If there are more events than counters,
to be measured, time multiplexing
gives to each event, a chance to access
the monitoring hardware.

• Multiplexing only applies to hardware
events.

• With multiplexing, an event is not
measured all the time.

• At the end, the count is scaled out by a
multiplying factor.

• This provide an estimate, of what the count would

have been.

Fixed-function General purpose

3 8

On-core # counters, @ recent Intel architectures

14

PERF_EVENT_OPEN

A call to perf_event_open() creates a file descriptor that allows measuring performance
information. Each file descriptor corresponds to one event that is measured.

The perf_event_attr structure provides detailed configuration information for the event being
created.

One of the fields of perf_event_attr is the __u32 type, which indicates the type of the event, like:

PERF_TYPE_HARDWARE PERF_TYPE_SOFTWARE

PERF_TYPE_RAW

PERF_TYPE_RAW indicates a "raw" implementation-specific event in the __u64 config field
(usually composed by two hexadecimal values: a mask and an event selector).

15

The Roofline model

https://en.wikipedia.org

• The work W denotes the
number of operations
performed by a given
application as FLOPs.

• The memory traffic Q denotes
the number of bytes of memory
transfers, during the execution
of the application.

• The arithmetic intensity I is the
ratio of the work W to the
memory traffic Q (FLOPs/byte).

The π is the peak performance, while the β is the peak bandwidth.

• Is performance limited by compute or data movement?

• Y-axis: performance in FLOPS

• X-axis: Arithmetic Intensity AI (FLOP/Byte)

• Ratio between total FLOP and total byte exchange
with main memory

• Measure of data locality (data reuse)

• Typical machine balance is 5-10 AI

• Stream TRIAD: 0.083 AI (2 FLOP per 24 bytes)

• Application/kernel near the roofline are making good
use of computational resources

• Compute bound: >50% of peak performance

• Bandwidth bound: >50% of Stream Triad

• Bad performance:

• Insufficient cache bandwidth

• Bad data locality

• Integer heavy code

• Lack of FMA

• Lack vectorization

The Roofline model - 02

16

17

Roofline with perf

Floating point instructions

• FP_ARITH_INST_RETIRED.SCALAR_SI
NGLE/DOUBLE

• FP_ARITH_INST_RETIRED.128B_PAC
KED_SINGLE/DOUBLE

• FP_ARITH_INST_RETIRED.256B_PAC
KED_SINGLE/DOUBLE

• FP_ARITH_INST_RETIRED.512B_PAC
KED_SINGLE/DOUBLE

Number of X-bit computational
single/double precision floating-point

instructions retired.

Memory read/write instructions

• UNC_M_CAS_COUNT.RD
• UNC_M_CAS_COUNT.WR
• UNC_M_CAS_COUNT.ALL

CAS (Column Address Select)
commands are issued to specify the
address to read or write on DRAM.

These events count all CAS commands
issued to DRAM PER memory channel.

https://perfmon-events.intel.com

18

Roofline with perf - 02
Floating point instructions

• EventSel=C7H UMask=02H/01H
 Counter=0,1,2,3
 CounterHTOff=0,1,2,3,4,5,6,7

• EventSel=C7H UMask=08H/04H
 Counter=0,1,2,3
 CounterHTOff=0,1,2,3,4,5,6,7

• EventSel=C7H UMask=20H/10H
 Counter=0,1,2,3
 CounterHTOff=0,1,2,3,4,5,6,7

• EventSel=C7H UMask=80H/40H
 Counter=0,1,2,3
 CounterHTOff=0,1,2,3,4,5,6,7

Memory read/write instructions

• EventSel=04H UMask=03H
Counter=0,1,2,3

• EventSel=04H UMask=0CH
Counter=0,1,2,3

• EventSel=04H UMask=0FH
Counter=0,1,2,3

https://perfmon-events.intel.com

No way to change the channel
(counters are for memory channel)?

 e
 e /

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 e
 .

 i

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 e

 e

 e

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 e

 e

 e

 e

 o

 .

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 /

 ore

 .

In
te

l®
 X

e
o
n
®

 P
ro

c
e
ss

o
r
S
c
a
la

b
le

 M
e
m

o
ry

 F
a
m

ily

R
e
fe

re
n
c
e
 M

a
n
u
a
l

19

ACCESS PERFORMANCE COUNTERS

• Obtain the event type number by:

cat /sys/bus/event_source/devices/uncore_imc_*/type

 where * goes from 0 to 5, included (in case of a CascadeLake
 system).

• Use those values to fill the field type of perf_event_attr,
instead of using the predefined PERF_TYPE_RAW type.

• Use the pairs UMask and EventSel from the hardware events
references.

• Example reported for the uncore_imc_0 (type 0xe) and for the
event UNC_M_CAS_COUNT.RD (Umask 03, EventSel 04).

Main(){

 …..

 …..
 struct perf_event_attr perf_pe;

 /*Giving the list of parameters.*/
 perf_pe.type = 0xe;

 perf_pe.size = sizeof(perf_pe);
 perf_pe.pinned = 0;

 perf_pe.disabled = 1;
 perf_pe.exclude_kernel = 1;
 perf_pe.exclude_hv = 1;

 perf_pe.config = 0x0304;

 /*set up performance monitoring.*/
 fd = perf_event_open(&perf_pe, pid, cpu = -1, -1, 0);

 /*Enabling the event.*/
 ioctl(fd, PERF_EVENT_IOC_RESET, 0);

 /*Resetting the event.*/

ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

 /*Reading the event.*/

read(fd, &count, sizeof(count));

 /*Disabling the event.*/

 ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
 ….

 ….
}

20

ACCESS PERFORMANCE COUNTERS -02

libcntd.so

Wrapper
C/C++

Wrapper Fortran
Binding C

MPI
Profiler

EventsFine-grain
Profiler

Coarse-grain
Profiler

Runtime

Callback

MPI Interface

PMPI InterfaceLogging

COUTDOWN: https://github.com/EEESlab/countdown

M ain(){

 /* Initialize the MPI environment */

 M PI_Init()

 /* Get the number of processes */
 M PI_Comm_size(&size)

 /* Get the rank */

 M PI_Comm_rank(&rank)

 /* Print a hello world */

 printf("H w d f k “

 “%d z %d\ “ k z)

 /* Finalize the MPI environment */
 M PI_Finalize()

}

M PI_%CALL_NAME%(){

 Prologue()

 PM PI_%CALL_NAME%()

 Epilogue()

}

Prologue(){

 Profiling()

 Event(START)

}

Epilogue(){

 Event(END)

 Profiling()

}

PM PI_Init() {…}

PM PI_Comm_size() {…}

PM PI_Comm_rank() {…}

PM PI_ Finalize() {…}

M PI_Init() {…}

M PI_Comm_size() {…}

M PI_Comm_rank() {…}

M PI_ Finalize() {…}

app.x libcntd.so libmpi.so

D
yn

am
ic

Li

nk
in

g

D
yn

am
ic

Li

n
ki

n
g

• Not easy at all!
• For this reason, we developed COUNTDOWN (CINECA + UNIBO project)
• COUNTDOWN instruments the application at execution time and collect information on the

application workload.

https://github.com/EEESlab/countdown

21

ACCESS PERFORMANCE COUNTERS -03

Conclusions & Take away messages

• Application workload have different performance on different
architectures

• Lack of microarchitecture efficiency limits the application
performance more than scalability

• Performance models can help you to understand how application use
the system resources

• Tools may help to spot inefficiencies, but you do the thinking!

22

	Slide 1
	Slide 2: Overview
	Slide 3: What they taught to you about computer architecture
	Slide 4: What it actually is
	Slide 5: Goal: exploit performance
	Slide 6: µarch performance events (very few of them)
	Slide 7: Micro architecture performance optimization
	Slide 8: Performance Monitoring Unit (PMU)
	Slide 9: Pmon Uncore blocks
	Slide 10: Enter Linux perf
	Slide 11
	Slide 12: perf stat/record format
	Slide 13: MULTIPLEXING AND SCALING EVENTS
	Slide 14: PERF_EVENT_OPEN
	Slide 15: The Roofline model
	Slide 16
	Slide 17: Roofline with perf
	Slide 18: Roofline with perf - 02
	Slide 19: ACCESS PERFORMANCE COUNTERS
	Slide 20: ACCESS PERFORMANCE COUNTERS -02
	Slide 21: ACCESS PERFORMANCE COUNTERS -03
	Slide 22

