CINECA

Introduction to Performance Monitoring

Federico Tesser — HPC Specialist
f.tesser@cineca.it

CINECA
Overview

* Introduction on HPC microarchitectures

* Performance and efficiency of microarchitectures
e Jump into HW performance counters

* Aview on Linux Perf

* Roofline model

* Conclusions & Take away messages

CINECA

What they taught to you about computer architecture

CPU: scalar, in order, RISC based, 32bit, short pipeling, single level cache, single threading, single core, single socket
with fixed operatingfrequency and uniform memory access

I%X EXMEM MEM/WE
. Branch

76107 1aken

Re 10 .

Ry 15

Registers

Fmemory ™ mEmweIR

Cascade lake microarchitecture c I N E CA

Front End Instruction
Cache Tag| L1 Instruction Cache

WOP Cache 32KiB 8-Way Instruction
Tag TLB

What it actually is

CPU: superscalar, out of order, multi-level caches, Branch B

Predictor
ﬁngl‘::J)o (16 B window)

CISC based (x86), 64bit, multi-threading, many core, e e v
: . . Inghuction Quene [immmruen
multi socket with dynamic voltage and frequency N —

scaling and non-uniform memory access Herscose 5-Way Decode

a12A2/ar9

ROM Complex || Simple Simple Simple Simple
D d d s d
(MS ROM) 1ic:;:r Decouper Decouperl De:sper DE::Perl Stack
g - - Engine
4 poPs (SE)
A A A A A A S A A A A A A 5 pOPs
][i N [TR]]\ Tt 1][T Decoded Stream Buffer (DSB) Y
| [[] |] [[[1 J 1[] J | (HOP Cache) 6 poPs
Vv v/ AVARVARVERY vV V VY vV V VYV W Vv vV V V V (1.5k pOPs; B-Way)
PCle x16 OnPKG (64 B window) LB«
2x UPI x20 PCle x16 DMI x4 PCle x16 UPI x20 PCle x16
CBDMA
= BD 1 el Allocation Queue (IDQ) (128, 2x64 pOPs)
LLC SF SF LLC LLC SF SF LLC LLC SF SF LLC
oP oP oP oP OP oP Branch Order Buffer
| Register Alias Table (RAT) |"*¢n ¥ ¥ ¥ " " " (BOB) (48-entry)
Core Core Core Core Core Core On
Load 1
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR §' “4‘ Move Elimination REn::gredigf;;tééf‘ee:gigent ‘ Ones Idioms || Zeraing Idiamsl
2
|
TR —-— === — - = = = - — PN]
g z HOP HOP HOP HOP HOP HoP HOP HOP
=l |
COI'e COI‘e COI'e COI‘E COI'e COI‘e i Integer Physical Register File Unified Re SChequle; . RS Vector Physical Register File
||| fi] (180 Registers) nified Reservation Station (RS) (168 Registers)
o | Store) (97 entries)
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL/ FIVR ADPLL / FIVR ADPLL/ FIVR
[Porto | [Port1 | [Ports | [Porte | [Port2 | |[Port3 | | Portd | | Port7 |
<= ooms w . ooma <=—> wop woP wop woP woP op wop woP
o= (=i
3o 53 =
<"~ DDR4 T3 13 DDR4 <[> [INTALU || INTALU | | inTAW | [acu || Acu |
- g3 Core Core Core Core it | = 6aB/cycle
<= ooRa % bora < | [INT Vst AL (INT Veck ALUES[iNT Vect ALD] 5 @5 4
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR H £[INT Vect MUL| INT Vect MUL] 512bit/cycle =% = o To L3
[_FPFMA | FPFMA | ©v N
Ue sF e sf 0 e T 3l =
512b fused 512b (zmm only) Eus ==} é m
- piona 2
Vect String
Core Core Core Core Core Core P DIV
Branch
ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR E - E .
xecution Engine
LC SF e e e e] SF LLC 9 Store Buffer & Forwarding
(56 entries) e
64B/eycle \E
Core Core Core Core Core Core . g
il n
Data TLB o
ADPLL / FIVR ADPLL [FIVR ADPLL [FIVR ADPLL / FIVR ADPLL / FIVR ADPLL / FIVR Load Buffer § L1 Data Cache Q o
(72 entries) | % 32KiB 8-Way
https://en.wikichip.org 5 Line Fill Buffers (LFB) 4

Cascade lake SoC Layout Memory Subsystem 7=

CINECA
Goal: exploit performance

Performance is a result of:

* How many instructions you require to implement an algorithm

* How efficiently those instructions are executed on a CPU

But what does it mean "efficient execution"?

* Scientific view: HPC application » Scientific algorithm + data » Result

* Computer view: HPC application » Set of finite sequences of computer instructions + digital data » Result
* Computer performance » Higher Instructions Per second/Cycle (IPC) » Shorter execution time

* Almost true -> Eg. higher IPC with scalar instructions

* FLoating point Operations Per Second (FLOPS) » Better metric » 500

But remember the following three things:

1. Itisimpossible to reach the theoretical peak performance of a system;

2. Focusing on the optimization of a single performance metric can reduce other performance metrics (trade-off problem);

3. Asingle performance metric cannot express the overall efficiency of a microarchitecture but we need to consider multiple
metrics;

CINECA
uarch performance events (very few of them)

* Cycles: countthe number of cycles
* Instructions retired: countthe number of macro instructions executed
* Vector instructionsretired: countthe number of vector macro instructions

* Branches: count the number of branch taken

» Cache miss/hit (at multiple cache levels): count the miss/hit of the cache references -> it show the locality of the
code

* Memory read/write: number of time that a cache line was read/written from the memory

uarch performance events # performance metrics

FLOPS: arithmetic operations executed

Memory throughput: number of bytes exchange with the memory

IPC: instructions per cycle -> this metric show the macro instruction throughput of the microarchitecture

Vectorization ratio: percentage of how many vector instructions are retired wrt the total instructions

CINECA
Micro architecture performance optimization

In modern CPUs it is very difficult to understand if my application is
efficiently performing on a specific system (also from an energy point of

view)!

We need HW support from the processor (PMU) -> Only what is measurable
can be improved!

Tools help you to get access to the HW subsystem and automatize routines
but...

Use vour brain! Tools may help, but you do the thinking!!!

CINECA
Performance Monitoring Unit (PMU)

The CPU supports you with the PMUs!

A PMU usually support many events (cycles, instructions retired, etc.) through Performance
Monitoring Counters (PMC).

A PMU can be:
e on-core: microarchitecture events at the core level (cycles, instructions retired, ...)

 off-core: microarchitecture events outside of cores (memory read/write, ...)

‘ ‘ H PMCs can be:
eoCbex | » fixed: can be only enabled or disable and profile a specific event
. - * configurable: can monitor many events
e = e e PMCs are usually configurable only at kernels level
R S Usually, CPUs provide at user space some assembly instructions

4 Intel® QPI links

with low overhead (see rdpmc()) to read PMCs .

Pmon Uncore blocks

CINECA

. # Counters/ # Queue Packet Match/ . .
Unlt Cq]trOIl Plvm Box # Boxes Box Enabled Mask Filters? Bit Width
Status Registers Block CHA up to 28 4 1 Y 48
110 up to 6 between C, 4 (+1) per stack 0 N 48
P and M flavors (+4 per port)
Counter Control Counter TRP p to 6 2 ¢ N 48
RegISteI’S RegISteI'S IMC up to 2 4 (+1) 4 N 48
(each with up to 3 (per channel)
channels)
Intel® UPI up to 2 4 4 Y 48
: ' (2 or 3 links) (per link)
. h — Fl, '
PMON ,...%E..\;.;R..qs..“.{e.r.sa.g M3UPI up to 2 3 1 N 48
Bl 1 Data Samples, etc E (2 or 3 links) (per link)
()(:k lecoccssccccscscanaccans
Corrpanlong : M2M up to 2 4 1 Y 48
State i Free Runni, ' pPCU 1 4 (+2) 4 N 48
.................... .
H Counters H UBoOX 1 2 (+1) 0 N 48
leccccscccnacscannaanaa]

The programming interface of the counter registers and control registers fall into two

address spaces:

* Accessed by MSR are PMON registers within the CHA units, 11O, IRP, PCU, and U-Box.

e Access by PCl device configuration space are PMON registers within the IMC, Intel UPI and
M3UPI units.

Intel® Xeon® Processor Scalable Memory Family Reference Manual 9

CINECA
Enter Linux perf

 Official Linux profiler
e Built on top of kernel infrastructure (ftrace)
e Source and docs in kernel tree

* Provides a plethora of profiling/tracing features at all system levels
e user, kernel, CGROUP, etc...

* Most important for us: a comprehensive toolbox to gain workload
execution insights via PMCs

* Low overhead*

* Tunable
e 1-2% counting mode, 5-15% sampling w/multiplexing

* Nowak, Andrzej et al. “Establishing a Base of Trust with Performance Counters for Enterprise Workloads.” USENIX Annual Technical Conference (2015).

Linux perf_events Event Sources

CINECA

~

r/
Dyne?mlc Tracepoints syscalls: PMCs
Tracing
extd: Oberating Svst sock: // SChiéz cycles
A perating system / t‘-fls : 1 instructions
icati signat: branch-*
Applications / / timer: L1%
workqueug:
uprobes System Librarieﬁ / T LLC-*
X System Call Interface / y CPU l
Int
File Systems TCP/UDP A 1
kprobes > kmem:
A Volume Manager IP Virtual «— vmscan: Memory
Block Device Interface Ethernet 4 Memory writeback Bus
Device Drivers
v / ‘\) . DRAM
jbd2 : f net: 1rq:
block: scsi: skb: T
mem-load
mem-store
Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults

perf stat/record format

S perf record -a -F 4000 -e L1-dcache-load-misses,L1-dcache-loads -- SAPP
| J 1 J 1

A A T

events
sampling frequency, which events

scope
which sources we want to take into account

action
record (sample), stat (count)

CINECA

12

CINECA
MULTIPLEXING AND SCALING EVENTS

* Performance monitoring counters are .)
. . Fixed-function General purpose
present in a fixed number.
* If there are more events than counters, 3 3
to be measured, time mUItiPIEXing On-core # counters, @ recent Intel architectures
gives to each event, a chance to access
the monitoring hardware.
* Multiplexing only applies to hardware . time_enabled
P & Yy app final_count = raw_count - — :
events. time_running

e With multiplexing, an event is not
measured all the time.

* Atthe end, the count is scaled out by a * This provide an estimate, of what the count would
multiplying factor. have been.

13

CINECA
PERF EVENT OPEN

A call to perf_event _open() creates a file descriptor that allows measuring performance
information. Each file descriptor corresponds to one event that is measured.

The perf_event_attr structure provides detailed configuration information for the event being
created.

One of the fields of perf _event_attris the __u32 type, which indicates the type of the event, like:
PERF_TYPE_HARDWARE PERF_TYPE_SOFTWARE

PERF_TYPE_RAW

PERF_TYPE_RAW indicates a "raw" implementation-specific event in the __u64 config field
(usually composed by two hexadecimal values: a mask and an event selector).

CINECA
The Roofline model

Performance [GFLOPS]

\ * The work W denotes the
- Bound based on bandwidth,/ num ber Of Operat|0ns
a /'/ Bound based on peak performance performed by d given
2 - application as FLOPs.
. . APP, * The memory traffic Q denotes
. hic the number of bytes of memory
R transfers, during the execution
1/4 PP))
of the application.
1}4 1}2 1 2 4 s 6 : e 128 256 sz Ope;ational‘lntensilty [FLOPS7byte] * The arithmetic intenSity lis the
https://en.wikipedia.org ratio of the work W to the

memory traffic Q (FLOPs/byte).

P = min {g ; The it is the peak performance, while the B is the peak bandwidth.

15

CINECA
The Roofline model - 02

A

* |Is performance limited by compute or data movement?
e Y-axis: performance in FLOPS

» X-axis: Arithmetic Intensity Al (FLOP/Byte)
e Ratio between total FLOP and total byte exchange
Peak FLOP/s Y €

__ // * Measure of data locality (data reuse)

* Typical machine balance is 5-10 Al
* Stream TRIAD: 0.083 Al (2 FLOP per 24 bytes)

* Application/kernel near the roofline are making good
use of computational resources

* Compute bound: >50% of peak performance
* Bandwidth bound: >50% of Stream Triad

Attainable Flop/s

Compute-bound Bad performance:

e * Insufficient cache bandwidth

: * Bad data locality

|
) * Integer heavy code
ArithmeticIntensity(FLOP:'Byte) . LaCkgofFMAy

e Lack vectorization 16

CINECA
Roofline with perf

Floating point instructions Memory read/write instructions

* FP_ARITH_INST_RETIRED.SCALAR_SI
NGLE/DOUBLE

 FP_ARITH_INST RETIRED.128B_PAC
KED_SINGLE/DOUBLE

UNC_M_CAS_COUNT.RD
UNC_M_CAS_COUNTWR
UNC_M_CAS_COUNT.ALL

* FP_ARITH_INST_RETIRED.256B_PAC CAS (Column Address Select)
KED_SINGLE/DOUBLE commands are issued to specify the
 FP_ARITH_INST_RETIRED.512B_PAC address to read or write on DRAM.

KED_SINGLE/DOUBLE

Number of X-bit computational These events count all CAS commands
single/double precision floating-point issued to DRAM PER memory channel.
instructions retired.

https://perfmon-events.intel.com

CINECA
Roofline with perf- 02

Floating point instructions

Memory read/write instructions

e EventSel=04H UMask=03H

« EventSel=C7H UMask=02H/01H Counter=0,1,2,3
Counter=0,1,2,3 EventSel=04H UMask=0CH
CounterHTOff=0,1,2,3,4,5,6,7 Counter=0,1,2,3
* EventSel=C7H UMask=08H/04H * EventSel=04H UMask=0FH E
Counter=0,1,2,3 Counter=0,1,2,3 3
CounterHTOff=0,1,2,3,4,5,6,7 No way to change the channel $
* EventSel=C7H UMask=20H/10H (counters are for memory channel)? £
Counter=0, 1, 2,3 10_4;“;1@ s e pqe 86T xIGPCE 100GDMCP 102@ g‘
DI i S T S S 2
CounterHTOff=0,1,2,3,4,5,6,7 '!o Byt =i 2
d EVEﬂtSE|:C7H UMaSkZSOH/4OH el W Frrren. L ez :::: il [L e %
Counter=0,1,2,3 J J _I ,JL 2 2
CounterHTOff=0,1,2,3,4,5,6,7 I ERITER L :
ﬂl ﬂl &l core | COI’eJ ®
https://perfmon-events.intel.com QuoeB] ueren w/er LLc/cH rezeny s S
 ucsen / LLC/CH LC/ T/cHE:I LL . 84%

CINECA
ACCESS PERFORMANCE COUNTERS

* Obtain the event type number by: Main(f

.s.t?uct perf_event_attr perf_pe;
[[d *
cat /sys/bus/event_source/devices/uncore_imc_*/type FGiing the list o parameteres!
perf_pe.type = Oxe;
perf_pe.size = sizeof(perf_pe);

where * goes from 0 to 5, included (in case of a Cascadelake e e lea 2.
perf_pe.exclude_kernel=1;
system).

perf_pe.exclude_hv =1,
perf_pe.config = 0x0304;

/*setup performance monitoring.*/
e Use those values to fill the field type of perf event attr, fd = perf_event_open(&perf_pe, pid, cpu =-1, -1, 0);
instead of using the predefined PERF_TYPE_RAW type. i PERe BVENT 10C RESET.0)
FResetting the event.*/
* Use the pairs UMask and EventSel from the hardware events 'Z::;nZE;:‘eEVVeiN;"OC‘ENABLE’O);
references.

read(fd, &count, sizeof(count));

[*Disabling the event.*/
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

 Example reported for the uncore _imc 0 (type Oxe) and for the
event UNC_M_CAS COUNT.RD (Umask 03, EventSel 04). }

4

CINECA
ACCESS PERFORMANCE COUNTERS -02

* Not easy at all!
* For this reason, we developed COUNTDOWN (CINECA + UNIBO project)

« COUNTDOWN instruments the application at execution time and collect information on the
application workload.

app.x libcntd.so libmpi.so

libentd.so M ain(}{ M PI_%CALL_NAME%(){ PMPL_Init(){...}
/* Initialize the MPl environment */ Prologue()
I MPI Interface I MPI_Init() PM PI_%CALL_NAME%() PMPI_Comm_size() {...}
Epilogue()
[* Getthenumber of processes */ PMPI_Comm_rank() {...}
MPI_Comm_size(&size)
_ _ Pr0|ogueo{ PMPI_FinaIize(){."}
/*Gettherank */ Profiling()
M PI_Comm_rank(&rank) Event(START)
} MPI_Init() {...}
I*Printa helloworld */ L w0 L o
R . : printf("Hello world from rank “ € c Epilogue(}{ € c MPI_Comm_size(){...}
Flne—graln Coarse-grain “%d, size %d\n“, rank, size) 2 < Event(END) 2 £
Profiler Profiler Callback = Profiling() Z3 MPI1_Comm_rank({...}

/* Finalizethe MPlenvironment */

O COUTDOWN: https://github.com/EEES|ab/countdown 50

} 7 MPI_Finalize(){...}
B 7

https://github.com/EEESlab/countdown​

ACCESS PERFORMANCE COUNTERS-03 ~ C'NECA

BEREEREREREEREHRENES O INFO BE##REFRERRREERERERR
of MPI Ranks:

FLOPS/
FLOP

#

OUNTDOWN REPORTING

21

CINECA
Conclusions & Take away messages

* Application workload have different performance on different
architectures

* Lack of microarchitecture efficiency limits the application
performance more than scalability

* Performance models can help you to understand how application use
the system resources

» Tools may help to spot inefficiencies, but you do the thinking!

	Slide 1
	Slide 2: Overview
	Slide 3: What they taught to you about computer architecture
	Slide 4: What it actually is
	Slide 5: Goal: exploit performance
	Slide 6: µarch performance events (very few of them)
	Slide 7: Micro architecture performance optimization
	Slide 8: Performance Monitoring Unit (PMU)
	Slide 9: Pmon Uncore blocks
	Slide 10: Enter Linux perf
	Slide 11
	Slide 12: perf stat/record format
	Slide 13: MULTIPLEXING AND SCALING EVENTS
	Slide 14: PERF_EVENT_OPEN
	Slide 15: The Roofline model
	Slide 16
	Slide 17: Roofline with perf
	Slide 18: Roofline with perf - 02
	Slide 19: ACCESS PERFORMANCE COUNTERS
	Slide 20: ACCESS PERFORMANCE COUNTERS -02
	Slide 21: ACCESS PERFORMANCE COUNTERS -03
	Slide 22

