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From sand to megawatts — Act 1: Dynamic Power
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From sand to megawatts — Act 1: Dynamic Power

‘effective capacitance” (Cra.qive)
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Ceff in a power-limited architecture

« TC/HGEMM has surprising data-dependent performance: 125 TF theoretical

peak, 113 TF achievable on zero-filled matrices, 105 TF peak on random CCC
matrices. ~95 TF peak on matrices with fully random FP16 entries

Power usage Clock speed

https://indico-jsc.fz-juelich.de/event/76/session/0/contribution/1/material/slides/0.pdf

Wayne Joubert - OpenPOWER ADG 2018
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From sand to megawatts — Act 2: Static Power a.k.a Leakage
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From sand to megawatts — Act 2: Static Power a.k.a Leakage

constants temperature
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Temperature in a power-limited architecture
# Nodes
0 100
#CPUs Average T CPU (°C) 1020 i : , '. : . y
0 200 a i ; i
I 1 I 1 I 1 I T 1 | T 1 l- T 1 % 1000
—@-CPUO | ; sé; S ogo |-
cPUT a p E z 1
; : i : B = 2
Lt { L g =3 = g 90
3 Y =N = = == ] L
é%_ = = = %E——— = E 940 |
E = = = = ]
| = = = g._.—-—.% o -
—— ——— § 920
900 PR | PR TR S TR [ SN TR T T N ST S ST SR N TR S ST PR
I 25 30 35 40 50
?L ’ Temperature (°C)
N TR TN TN S LA TR S S S | " PR S W T | ? IR T TR TR RSN W S SR W | ‘ PR

25 30 35 40 45 50 Fig. 5. Performance distribution of SuperMUC PhaseZ compute nodes (Intel

Haswell Xeon E5-2697 v3) at different inlet water temperatures.
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Fig. 7. Average power consumption distribution of SuperMUC Phasel compute
nodes (Intel Sandy Bridge-EP Xeon E5-2680 8C) running single node HPL (Turbo
OFF) at different inlet water temperatures.

Shoukourian et. al, Analysis of the efficiency characteristics of the first High-Temperature O —
Direct Liquid Cooled Petascale supercomputer and its cooling infrastructure, JPDC 2017 UNIVERSITA DI BOLOGNA



From sand to megawaits — Act 3: Alpha-Power Thermal Inversion

— Cout Vdd — Cout Vdd

Delay: D p,
Ly MV, -V, (D]

p

Carrier Mobility: u(T) = |J(TO)(%)rh

Threshold Voltage: Vi, = Vin(T) -K(T-Tp)

L) bl Vinl

Temperature in a power-limited architecture N4

Fuax I Fuax 1

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA



From sand to megawatts — Act 3: Alpha-Power Thermal Inversion
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Temperature vs. peak performance vs. efficiency

it Energy Efficiency - No Compensation (Vgg = 0)

Freguency Gain (%)

65
Voltage supply (Vpp)

= =4 - antages?.l%sply V po!
A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology,
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From sand to megawatts — Act 4: Thermal Dissipation

Taskj
Power Thermal

model model
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Dynamic Model
ss: T[n + 1] = AT|n] + BP|n]
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From sand to megawatts — Act 4: Thermal Dissipation

T
Measured

Fitted R2=0‘833

Beneventietal., An Effective Gray-Box Identification
Procedure for Multicore Thermal Modeling TC14

Dynamic Model

ss: T|n+ 1] = AT|n] + BP[n]

Temperature [C]

Tc@0.334ms | Time (s)

Thermal transient:
1 0.0076

time constants
t2 0.7716

Model fitting

t3 20.0745

. _ B(z™1
if: Tln+1] = mP[n]
Is it temperature constant ? [

10 . |
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Fitted R2:0.993
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From sand to megawatts — Act 5: Compute Node power management

- Qut-of-band - zero overhead

telemetry

Node Pcap - Max perf @ Pnode<Pmax
RAS - error and conditions reporting

« Basedon U.S. metrics
 Slow & often unused

System Management / RM

Node Power Cap

System Management / RM

Power Cap Energy vs.
el oo

Application

Hints/Prescription -

RAS

Out of band

DIMM

Operating System
In band Governors

Controller i
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From sand to megawatts — Act 5: Compute Node power management
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From sand to megawatts — Act 5: Compute Node power management

Intel DVFS Power Manager CINECA

. il iy an LA uu i o ) O 0 O u:m ) 1o |
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e . i o i i o | W Today’s HW power manager of Intel Architectures is quite slow in frequency variation!
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Literatures studied this mechanism and, for reverse engineering, discovered a 500us latency!
) O :: obiid
Y o

s VI P-STATE AND C-STATE TRANSITION LATENCIES therefore tike 1,000" measurcments for a single pair of start
2015 IEEE Insenationsl Paralel nd Drstributod Processing Symposium Workshap gy ellion dogrpriossri oy A sy Sofowd

A P-State Transition Latencies frequency pains yield similar results.

An Energy Efficiency Feature Survey of the The introdoction of iniegrated vollage egulalors. T COf¢  Figyre 3 depicts the resubs of four experimeats with 1,000
frequency domains. and improvements in the power coalol  recuiiy each as 4 histogram. With frequency change requested.
Intel Haswell*Processor i (PCU) e et e o he ey and hrsion 1 s o el b 5 e e

of ACPI processor state [25) transitions. To examine the new
architecture, we use FTaLaT [26] for p-states and the tools
developed by Schome ct al. [27] for c-states. We modificd

R i o s s W WO ke, i S Wl FTaLaT in the following ways:
e o et S i Prfomace Computin: ZH) o The wigioal FILT reads

sche U resden 01062 Dresden, Ger i poe
Emil: (um\“kmkxw«n\mxuv omas.lsche. durvel molka. P“thl&mﬂ robin peyer ) & dresden. de :::‘"S ol “‘1":'1:‘ pdmely

500us

* Intel Broadwell architectures as well!
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From sand to megawatts — Act 6: Room/DC Cooling Cost

Pir+PcooLING

Power Usage Efficiency (PUE) &
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Bartolini et al, Paving the way toward energy-aware and automated datacentre ICPP19 EX A
Bartolini et al, Examon-x: a predictive maintenance framework for automatic monitoring in industrial iot systems JIOT21

From sand to megawatts — Act 7: Data-driven Large-scale Optimization

Using 3D visualization tool linked to the real fime data provided by ExaMon can bring several

. ALMA MATER STUDIORUM
benefITS UNIVERSITA DI BOLOGNA

m—y , L , CINECA
o « Visuadlization and Analysis

« Helpsidentify and understand events
and behaviorsinrelation to the
location of objects.

 Enables XR (VR/AR/MR) applications

* |mproved collaboration

» Visualizihg data and issuesin a
commonand familiar visual
representation enables better
decision-making through improved
communicationand collaboration.
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EXAVION
From sand to megawatts — Act 7: Data-driven Large-scale Optimization

PoC#1: Data center room power and thermal analysis
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EXAVION

From sand to megawatts — Act 7: Data-driven Large-scale Optimization

PoC#2: @CINECA: Marconi 100 PUE optimization

e Results obtained :

CINECA

16

— By analyzing the efficiency curves

obtained using historical data, it was
possible to determine the optimal
operating point of the devices as a
function of load, temperature and
humidity.

— Thanks to the immediate feedback

provided by the dashboards, the
operators were able to set the individual
set points of the devices optimally.

During the trial period, we were able to
achieve a PUE reduction of
approximately 8% when compared to
historical data measured under the same
environmental and operating conditions.

copP
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From sand to megawatts — Act 7: Data-driven
Large-scale Optimization w. Al !!

ExaMon@2021:

- Deployed on CINECA Datacentre since 2015

- Monitoring Operation, Facility, ICT and Users:
>1M sensors, DB: 7TB online, 12GBs/Day, 21KSa/s 252 aa7s 310 P VT AT e T T A

- Flexible dashboard for User Support, Admin =

and Facility managers i s
ExaMon + Al — Anomaly Detection & Anticipation! = L TE
ldea: use DL to extract normal behaviour and relationship from the monitored
Sensors. """" i "SQ'L """"" - gl
T T Live ’
: Data -ML Model TIME
' ' PUTHETAR o em N (Autoencoder) |, ine Inference /
INLET AIR;;S‘:’ :’//"/:;E/. ;: 'w -'m"‘(,,\ Sgtoer;?(?l{]
Thermal Hazard Training
‘Es’* Analysis
g % - Label Generator Thermal
5 é Data Preprocessing ::ez:ir::jtion ‘
= Data Loader ’ )
INFeRENCE Detect node’s miss-
configurations & [aldin
Detectitnermalinazardsiana anomalies R il—

UNIVERSITA DI BOLOGNA

17 cooling shortage



From sand to megawatts — Act 7: Data-driven ze0do Eom—CY - oo
La rgE'Scale Optlmlzatlon W. AI !! Celebrating our 10th anniversary! Send us your birthday greeting here.

January 31, 2023 [ Dataset | Open Access

. M100 dataset 6: 22-03
EXGData - Open da taset - jus t re,eas Ed Andrea Borghesi; Carmine Di Santi; Martin Molan; & Mohsen Seyedkazemi Ardebili; Alessio Mauri; Massimiliano

Guarrasi; Daniela Galetti; Mirko Cestari; Francesco Barchi; Luca Benini; Francesco Beneventi; (® Andrea Bartolini

This entry is a part of a larger data set collected from the most recent Tier-0 supercomputer hosted at CINECA
. . . ' )s://www.hpc.cineca.it/hardware/marconi100). The data covers the entirety of the system, ranging from
»des (980+ computing nodes) internal information such as core loads, temperatures, frequencies, memory
S C I e n t I f I C d ata ions, CPU power consumption, fan speed, GPU usage details, etc., to the system-wide information,
id cooling infrastructure, the air conditioning system, the power supply units, workload manager statistics,
fformation, system status alerts, and weather forecast.
dreds of metrics measured on each computing node, in addition to hundreds of other metrics gathered

Explore content v  About the journal v  Publish with us v Fltotex] g Sk Eys(E Campanant:

et is stored as a collection of Zenodo entries; this particular entry corresponds to the period: 22-03.

red as a partitioned Parquet dataset, with this partitioning hierarchy: year_month ("YY-MM"), plugin,
is distributed as tarball files, each corresponding to one month of data (first-level partitioning,

a is generated by a monitoring infrastructure working on unstructured data (to improve efficiency and

nature > scientific data > data descriptors > article R

g ExaData® e | 2
Project ID: 43029902 [

<-1Commit ¥ 1Branch ¢70Tags [ 29.3 MB Project Storage

Data Descriptor | Open Access | Published: 18 May 2023

M100 ExaData: a data collection campaign on the
CINECA's Marconi100 Tier-0 supercomputer

bO6BdT1D | [

Mame Last commit Last update
[ data_catalog v1.0.0 3 months ago
Andrea Borghesi &, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri, A
P examples v1.0.0 3 months ago
Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi &, Luca Benini, Francesco e
Beneventi & Andrea Bartolini - REAONE
3 README.md

Scientific Data 10, Article number: 288 (2023) | Cite this article M100 ExaData

Reference repository for the M100 ExaData project

1 Altmetric | Metrics

https://www.nature.com/articles/s41597-023-02174-3 https://gitlab.com/ecs-lab/exadata ALMA MAT»E; I——

UNIVERSITA DI BOLOGNA
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https://www.nature.com/articles/s41597-023-02174-3
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From sand to megawatts — Act 7: Data-driven

Large-scale Optimization w. Al !!

Antici et al, PM100: A Job Power Consumption Dataset of a

Large-scale Production HPC System SC23

Plugin

#Metrics

#Plugin-specific columns

Description

Vertiv

ExaData description

19

25

1

Mainly collects data from the air-conditioning units (CDZ) located in
room F (Marconi 100) of Cineca. The plugin uses the RESTful API in-
terface available on the individual devices to extract the most interesting
metrics.

Schncider

31 months of data
573 metrics, 980+ nodes, approx.

164

Dcdicated data collector designed to acquire data from an industrial
PLC by accessing its HMI module (from Schneider Electric). The PLC
controls the valves and pumps of the liquid cooling circuit (RDHx) of
Marconi 100. It consists of two (redundant) twin systems controllable by
two identical HMI panels, Q101 and Q102.The ExaMon plugin extracts
and stores all the metrics available on both panels.

50 TB uncompressed PMI

104

Collects all the sensor data provided by the OOB management interface
(BMC) of cluster nodes.

Vertiv, Schneider, IPMI, Ganglia, el

177

Connects to the Ganglia server (gmond), collects and translates the data
payload (XML) to the ExaMon data model.

Logics

Logics, Weather, Nagios, SLURM,
Job table

Hardware data, system monitoring

Data collection system already installed at Cineca. It is specialized
for collecting power consumption data from equipment in the different
rooms, typically using multimeters that communicate via Modbus pro-
tocol. The ExaMon plugin dedicated to collecting this data interfaces
to the Logics database (RDBMS) via its REST API. NOTE: Since the
translation process is fully automated, the same inconsistencies present
in the original db may result in the ExaMon database: e.g., metric names
in the Italian language, units of measure as metric name, etc.

data, external information Weather

10

Collects all the weather data related to the Cineca facility loca-
tion (Casalecchio di Reno) using an online open weather service
(https://openweathermap.org).

Different sampling granularities Nagios

Interfaces with a Nagios extension developed by CINECA called "Hna-
gios", collects and translates the data payload to the ExaMon data model.

(from seconds) to minutes —

54

Collects aggregated data from the SLURM server; these information is
gathered through ad hoc scripts created by CINECA system administra-
tors.

Zenodo + Nature Dataset P

89

Collects information regarding the jobs executed on the cluster (and store
in the SLURM database); the information collected are those provided
by users at submission time.

https://www.nature.com/articles/s41597-023-02174-3

ALMA MATER STUDIORUM
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https://www.nature.com/articles/s41597-023-02174-3
https://gitlab.com/ecs-lab/exadata
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:CNPyR2KL9-0C
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:CNPyR2KL9-0C

From sand to megawatts — Act 7: Data-driven
Large-scale Optimization w. Al !!

Datacenter Automation (Anomaly Detection & Anticipation)
Detect anomalies/faults in a HPC system
Hundreds/thousands of possible sources:

— HW components that malfunction, breakages,
misconfigurations, intruders, etc.

Strong incentive to automatize the detection process
* Downtime are very expensive
* It's better to identify a problem as soon as possible

omaly label

TW 4 raw an

[ ]
TW 6

Solution: DL models that can distinguish anomalies from
normal situations

TW 12

Borghesi et al., “Anomaly Detection using Autoencoders in High Performance Computing Systems”, AAAI'19

Borghesi et al, “Online_anomaly detection in hpc systems”, AICAS’1

Borghesi et al., "A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems"”, EAAI 2019
Molan et al, RUAD: Unsupervised anomaly detection in HPC systems, FGCS23

Mozlgn et al. Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA
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https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:X9ykpCP0fEIC

Example — Anomaly Detection per node-based or full room based

RUAD: Unsupervised anomaly detection in HPC systems, FGCS23

Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems ISC22

Examon-x: a predictive maintenance framework for automatic monitoring in industrial iot systems JIOT21
Integrated energy-aware management of supercomputer hybrid cooling systems TII06

Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23
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https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:X9ykpCP0fEIC
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