

ALMA MATER STUDIORUM Università di Bologna

From sand to megawatts in seven acts

Prof Andrea Bartolini

DEI, a.bartolini@unibo.it

From sand to megawatts – Act 1: Dynamic Power

From sand to megawatts – Act 1: Dynamic Power

<u>https://indico-jsc.fz-juelich.de/event/76/session/0/contribution/1/material/slides/0.pdf</u> <u>Wayne Joubert - OpenPOWER ADG 2018</u>

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

From sand to megawatts – Act 2: Static Power a.k.a Leakage

f

From sand to megawatts – Act 2: Static Power a.k.a Leakage

Fig. 7. Average power consumption distribution of SuperMUC Phase1 compute nodes (Intel Sandy Bridge-EP Xeon E5-2680 8C) running single node HPL (Turbo OFF) at different inlet water temperatures.

Shoukourian et. al, Analysis of the efficiency characteristics of the first High-Temperature Direct Liquid Cooled Petascale supercomputer and its cooling infrastructure, JPDC 2017

From sand to megawatts – Act 3: Alpha-Power Thermal Inversion

From sand to megawatts – Act 3: Alpha-Power Thermal Inversion

A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology, D. Rossi, et al., Solid-State Electronics, 2016

From sand to megawatts – Act 4: Thermal Dissipation

From sand to megawatts – Act 4: Thermal Dissipation

From sand to megawatts – Act 5: Compute Node power management

From sand to megawatts – Act 5: Compute Node power management

From sand to megawatts – Act 5: Compute Node power management

UNIVERSITÀ DI BOLOGNA

From sand to megawatts – Act 6: Room/DC Cooling Cost

Using 3D visualization tool linked to the real time data provided by ExaMon can bring several benefits

- Improved collaboration
 - Visualizing data and issues in a common and familiar visual representation enables better decision-making through improved communication and collaboration.

EXA

 Visualization and Analysis
 Helps identify and understand events and behaviors in relation to the

location of objects.

• Enables XR (VR/AR/MR) applications

PoC#1: Data center room power and thermal analysis

COP

PoC#2: @CINECA: Marconi 100 PUE optimization

- Results obtained : \bullet
 - By analyzing the efficiency curves obtained using historical data, it was possible to determine the optimal operating point of the devices as a function of load, temperature and humidity.
 - Thanks to the immediate feedback provided by the dashboards, the operators were able to set the individual set points of the devices optimally.
- During the trial period, we were able to achieve a PUE reduction of approximately 8% when compared to ┍┧┧┧ historical data measured under the same environmental and operating conditions.

NEC

ExaMon@2021:

17

- Deployed on CINECA Datacentre since 2015
- Monitoring Operation, Facility, ICT and Users:
 >1M sensors, DB: 7TB online, 12GBs/Day, 21KSa/s
- Flexible dashboard for User Support, Admin and Facility managers

ExaMon + AI \rightarrow **Anomaly Detection & Anticipation**!

Idea: use DL to extract normal behaviour and relationship from the monitored sensors.

ExaData – open dataset – just released

scientific data

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

<u>nature</u> > <u>scientific data</u> > <u>data descriptors</u> > article

Data Descriptor | Open Access | Published: 18 May 2023

M100 ExaData: a data collection campaign on the CINECA's Marconi100 Tier-0 supercomputer

Andrea Borghesi , <u>Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Ardebili, Alessio Mauri,</u> <u>Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari, Francesco Barchi</u>, <u>Luca Benini, Francesco</u> Beneventi & Andrea Bartolini

Scientific Data 10, Article number: 288 (2023) Cite this article

1 Altmetric | Metrics

https://www.nature.com/articles/s41597-023-02174-3

January 31, 2023

@ ecs-lab > ExaData

Dataset Open Access

M100 dataset 6: 22-03

💿 Andrea Borghesi; Carmine Di Santi; Martin Molan; 💿 Mohsen Seyedkazemi Ardebili; Alessio Mauri; Massimiliano Guarrasi; Daniela Galetti; Mirko Cestari; Francesco Barchi; Luca Benini; Francesco Beneventi; 💿 Andrea Bartolini

This entry is a part of a larger data set collected from the most recent Tier-0 supercomputer hosted at CINECA

bs://www.hpc.cineca.it/hardware/marconi100). The data covers the entirety of the system, ranging from odes (980+ computing nodes) internal information such as core loads, temperatures, frequencies, memory ions, CPU power consumption, fan speed, GPU usage details, etc., to the system-wide information, id cooling infrastructure, the air conditioning system, the power supply units, workload manager statistics, formation, system status alerts, and weather forecast.

dreds of metrics measured on each computing node, in addition to hundreds of other metrics gathered nitored along all system components.

et is stored as a collection of Zenodo entries; this particular entry corresponds to the period: 22-03.

pred as a partitioned Parquet dataset, with this partitioning hierarchy: year_month ("YY-MM"), plugin, is distributed as tarball files, each corresponding to one month of data (first-level partitioning,

a is generated by a monitoring infrastructure working on unstructured data (to improve efficiency and

E	ExaData () Project ID: 43029902 fb	🕸 Star 2
->- 1 Con	mmit 🖇 1 Branch 🖉 0 Tags 😑 29.3 MB Project Storage	

ain ~ exadata		Find file	
README] 한 Creative Commons	Attribution Share Alike 2.0 Generic		
Name	Last commit	Last update	
🗅 data_catalog	v1.0.0	3 months ago	
data_extraction	v1.0.0	3 months ago	
documentation	v1.0.0	3 months ago	
🗅 examples	v1.0.0	3 months ago	
⊐ parquet_dataset	v1.0.0	3 months ago	
LICENCE	v1.0.0	3 months age	
README.md	v1.0.0	3 months ago	
B README.md			
M100 ExaData			
Deference repetitory for the M100	TraData availant		

10.1088

https://gitlab.com/ecs-lab/exadata

ExaData description

- 31 months of data
- 573 metrics, 980+ nodes, approx.
 50 TB uncompressed
- Vertiv, Schneider, IPMI, Ganglia, Logics, Weather, Nagios, SLURM, Job table
- Hardware data, system monitoring data, external information
- Different sampling granularities (from seconds) to minutes
- Zenodo + Nature Dataset

Antici et al, PM100: A Job Power Consumption Dataset of a Large-scale Production HPC System SC23

		2022 V 1928 12	1-21 - 5.10
Plugin	#Metrics	#Plugin-specific columns	Description
Vertiv	25	1	Mainly collects data from the air-conditioning units (CDZ) located in room F (Marconi 100) of Cineca. The plugin uses the RESTful API interface available on the individual devices to extract the most interesting metrics.
Schneider	164	1	Dedicated data collector designed to acquire data from an industrial PLC by accessing its HMI module (from Schneider Electric). The PLC controls the valves and pumps of the liquid cooling circuit (RDHx) of Marconi 100. It consists of two (redundant) twin systems controllable by two identical HMI panels, Q101 and Q102. The ExaMon plugin extracts and stores all the metrics available on both panels.
IPMI	104	1	Collects all the sensor data provided by the OOB management interface (BMC) of cluster nodes.
Ganglia	177	1	Connects to the Ganglia server (gmond), collects and translates the data payload (XML) to the ExaMon data model.
Logics	37	2	Data collection system already installed at Cineca. It is specialized for collecting power consumption data from equipment in the different rooms, typically using multimeters that communicate via Modbus pro- tocol. The ExaMon plugin dedicated to collecting this data interfaces to the Logics database (RDBMS) via its REST API. NOTE: Since the translation process is fully automated, the same inconsistencies present in the original db may result in the ExaMon database: e.g., metric names in the Italian language, units of measure as metric name, etc.
Weather	10	0	Collects all the weather data related to the Cineca facility loca- tion (Casalecchio di Reno) using an online open weather service (https://openweathermap.org).
Nagios	1	5	Interfaces with a Nagios extension developed by CINECA called "Hna- gios", collects and translates the data payload to the ExaMon data model.
SLURM	54	4	Collects aggregated data from the SLURM server; these information is gathered through ad hoc scripts created by CINECA system administrators.
Job table	1	89	Collects information regarding the jobs executed on the cluster (and store in the SLURM database); the information collected are those provided by users at submission time.

¹⁹ <u>https://www.nature.com/articles/s41597-023-02174-3</u>

https://gitlab.com/ecs-lab/exadata

Datacenter Automation (Anomaly Detection & Anticipation)

- Detect anomalies/faults in a HPC system
- Hundreds/thousands of possible sources:
 - HW components that malfunction, breakages, misconfigurations, intruders, etc.
- Strong incentive to automatize the detection process
 - Downtime are *very* expensive
 - It's better to identify a problem as soon as possible
- Solution: DL models that can distinguish anomalies from normal situations

Borghesi et al., "Anomaly Detection using Autoencoders in High Performance Computing Systems", AAAl'19 Borghesi et al, "<u>Online anomaly detection in hpc systems</u>", AICAS'1 Borghesi et al., "<u>A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems</u>", EAAI 2019 <u>Molan et al, RUAD: Unsupervised anomaly detection in HPC systems</u>, FGCS23 Molan et al. Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23

Example – Anomaly Detection per node-based or full room based

<u>RUAD: Unsupervised anomaly detection in HPC systems</u>, FGCS23 <u>Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems</u> ISC22 <u>Examon-x: a predictive maintenance framework for automatic monitoring in industrial iot systems</u> JIOT21 <u>Integrated energy-aware management of supercomputer hybrid cooling systems</u> TII06 Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23

Job power prediction

- 1. Machine Learning models to predict the power consumption of HPC applications
- 2. Slurm Custom Extensions to schedule jobs based on their power
- 3. Interacts with power management

Job1

Default

Job Scheduler

Time

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Aknowledgment

European Processor Initiative

The european-project-initiative has received funding from the European High Performance Computing Joint Undertaking (JU) under Framework Partnership Agreement No 800928 and Specific Grant Agreement No 101036168 (EPI SGA2). The JU receives support from the European Union's Horizon 2020 research and innovation programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland.

The EUPEX project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No.101034126. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Italy, Switzerland, Germany, France, Greece, Sweden, Croatia and Turkey.

This REGALE-project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956560. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Greece, Germany, France, Spain, Austria, Italy.

The Spoke Future HPC of the Italian National Center of HPC, Big Data e Quantum Computing is funded by the National Recovery and Resilience Plan (NRRP).

