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From sand to megawatts – Act 1: Dynamic Power
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https://indico-jsc.fz-juelich.de/event/76/session/0/contribution/1/material/slides/0.pdf

Wayne Joubert - OpenPOWER ADG 2018

Ceff in a power-limited architecture

https://indico-jsc.fz-juelich.de/event/76/session/0/contribution/1/material/slides/0.pdf


From sand to megawatts – Act 2: Static Power a.k.a Leakage
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From sand to megawatts – Act 2: Static Power a.k.a Leakage
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Shoukourian et. al, Analysis of the efficiency characteristics of the first High-Temperature 

Direct Liquid Cooled Petascale supercomputer and its cooling infrastructure,  JPDC 2017

Temperature in a power-limited architecture



From sand to megawatts – Act 3: Alpha-Power Thermal Inversion
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Temperature in a power-limited architecture
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From sand to megawatts – Act 3: Alpha-Power Thermal Inversion
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Temperature vs. peak performance vs. efficiency

T ↑ μ↓ Vth↓

FMAX ↓    FMAX ↑

A 60 GOPS/W, −1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology, 

D. Rossi,et al., Solid-State Electronics, 2016



From sand to megawatts – Act 4: Thermal Dissipation
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From sand to megawatts – Act 4: Thermal Dissipation
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Dynamic Model

ss: 𝑇 𝑛 + 1 = 𝐴𝑇 𝑛 + 𝐵𝑃[𝑛]
tf: 𝑇 𝑛 + 1 = 𝐵 𝑧−1𝐴 𝑧−1 𝑃 𝑛

Is it temperature constant ? 

Tc@0.334ms Time (s) 

t1 0.0076 

t2 0.7716 

t3 20.0745 

Thermal transient:

time constants

Model fitting

Beneventi et al., An Effective Gray-Box Identification 

Procedure for Multicore Thermal Modeling TC14
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Main Archi. Blocks w. :
- Sensors (PVT, Util, archi)
- Controls (f,Vdd,Vbb,PG,CG)

- In band a.k.a low latency / user-space
telemetry (power, perf, …)
- O.S. PM governors: 

• cpufreq/ cpuidle
• Based on O.S. metrics
• Slow & often unused

- Low latency PM requests and/or 
suggestions

- From the Application/run-time

- Power cap => Max perf @ P<Pmax
- Energy => Min Energy @ f=f*
- Throughput => F > Fmax @ T,P<Max

- Out-of-band – zero overhead 
telemetry

- Node Pcap – Max perf @ Pnode<Pmax
- RAS – error and conditions reporting

Power 
Controller

VRM

BMC
PE

S

Operating System

Application

System Management / RM

GovernorsIn band

Hints/Prescription

Power Cap Energy vs. 
Througput

DIMM

RJ45

S
y
s
te

m
 M

a
n
a
g
e
m

e
n
t 

/ 
R
M

Out of band
Node Power Cap

RAS

From sand to megawatts – Act 5: Compute Node power management



From sand to megawatts – Act 5: Compute Node power management
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PCS 

co-design Ottaviano et al, ControlPULP: A RISC-V On-Chip Parallel Power Controller 
for Many-Core HPC Processors with FPGA-Based Hardware-In-The-Loop 
Power and Thermal Emulation, 2023

https://github.com/pulp-platform/control-pulp
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From sand to megawatts – Act 5: Compute Node power management
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None DVFS changes!

Intel DVFS Power Manager

500us

Today’s HW power manager of Intel Architectures is quite slow in frequency variation!

Literatures studied this mechanism and, for reverse engineering, discovered a 500us latency!

*

* Intel Broadwell architectures as well!

D. Cesarini et al. "COUNTDOWN: A Run-Time Library for 
Performance-Neutral Energy Saving in MPI Applications TC 2021

PCS & PM Runtime
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From sand to megawatts – Act 6: Room/DC Cooling Cost

Power Usage Efficiency (PUE) ≜ 𝑃𝐼𝑇+𝑃𝐶𝑂𝑂𝐿𝐼𝑁𝐺𝑃𝐼𝑇
PUE is always greater than 1 w. values 

ranging from: 1.0X to 1.40 
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From sand to megawatts – Act 7: Data-driven Large-scale Optimization 

Using 3D visualization tool linked to the real time data provided by ExaMon can bring several 

benefits

• Visualization and Analysis
• Helps identify and understand events 

and behaviors in relation to the 

location of objects.

• Enables XR (VR/AR/MR) applications

• Improved collaboration
• Visualizing data and issues in a 

common and familiar visual 
representation enables better 
decision-making through improved 
communication and collaboration.

Bartolini et al, Paving the way toward energy-aware and automated datacentre ICPP19
Bartolini et al, Examon-x: a predictive maintenance framework for automatic monitoring in industrial iot systems JIOT21

https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:CNPyR2KL9-0C
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&cstart=20&pagesize=80&citation_for_view=vt9PdNsAAAAJ:U_HPUtbDl20C
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&cstart=20&pagesize=80&citation_for_view=vt9PdNsAAAAJ:k_7cPK9k7w8C
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From sand to megawatts – Act 7: Data-driven Large-scale Optimization 

Node power 

consumption and 

inlet temperatures 

can be mapped and 

aggregated by node 

or by rack (average, 

total, max, ...).

Hot spots, thermal 

imbalances, and 

cooling efficiency 

can be quickly 

investigated to 

improve the overall 

system.

3D widgets can 

display complex 

metrics such as 

CRAC and chiller 

cooling load (bar 

height) and 

efficiency (color).

The overall v iew of 

the heat generation 

and dissipation 

process allows for a 

qualitative and 

immediate 

evaluation of the 

current cooling 

strategy.

PoC#1: Data center room power and thermal analysis
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From sand to megawatts – Act 7: Data-driven Large-scale Optimization 

PoC#2: @CINECA: Marconi 100 PUE optimization

• Results obtained :
– By analyzing the efficiency curves 

obtained using historical data, it was 
possible to determine the optimal 
operating point of the devices as a 
function of load, temperature and 
humidity.

– Thanks to the immediate feedback 
provided by the dashboards, the 
operators were able to set the individual 
set points of the devices optimally.

– During the trial period, we were able to 
achieve a PUE reduction of 
approximately 8% when compared to 
historical data measured under the same 
environmental and operating conditions.
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ExaMon@2021:

- Deployed on CINECA Datacentre since 2015

- Monitoring Operation, Facility, ICT and Users: 
>1M sensors, DB: 7TB online, 12GBs/Day, 21KSa/s

- Flexible dashboard for User Support, Admin 
and Facility managers

ExaMon + AI → Anomaly Detection & Anticipation! 

Idea: use DL to extract normal behaviour and relationship from the monitored
sensors.

Detect thermal hazards and 
cooling shortage

Detect node’s miss-

configurations & 

anomalies

From sand to megawatts – Act 7: Data-driven 
Large-scale Optimization w. AI !!



18

ExaData – open dataset – just released

https://www.nature.com/articles/s41597-023-02174-3 https://gitlab.com/ecs-lab/exadata

From sand to megawatts – Act 7: Data-driven 
Large-scale Optimization w. AI !!

https://www.nature.com/articles/s41597-023-02174-3
https://gitlab.com/ecs-lab/exadata
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From sand to megawatts – Act 7: Data-driven 
Large-scale Optimization w. AI !!

ExaData description 

• 31 months of data

• 573 metrics, 980+ nodes, approx. 

50 TB uncompressed

• Vertiv, Schneider, IPMI, Ganglia, 

Logics, Weather, Nagios, SLURM, 

Job table

• Hardware data, system monitoring 

data, external information

• Different sampling granularities 

(from seconds) to minutes

• Zenodo + Nature Dataset

https://www.nature.com/articles/s41597-023-02174-3 https://gitlab.com/ecs-lab/exadata

Antici et al, PM100: A Job Power Consumption Dataset of a 
Large-scale Production HPC System SC23

https://www.nature.com/articles/s41597-023-02174-3
https://gitlab.com/ecs-lab/exadata
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:CNPyR2KL9-0C
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:CNPyR2KL9-0C
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Datacenter Automation (Anomaly Detection & Anticipation)

• Detect anomalies/faults in a HPC system

• Hundreds/thousands of possible sources:

– HW components that malfunction, breakages, 

misconfigurations, intruders, etc.

• Strong incentive to automatize the detection process

• Downtime are very expensive

• It's better to identify a problem as soon as possible

• Solution: DL models that can distinguish anomalies from 
normal situations

Borghesi et al., “Anomaly Detection using Autoencoders in High Performance Computing Systems”, AAAI'19
Borghesi et al, “Online anomaly detection in hpc systems”, AICAS’1
Borghesi et al., "A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems", EAAI 2019
Molan et al, RUAD: Unsupervised anomaly detection in HPC systems, FGCS23
Molan et al. Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23

From sand to megawatts – Act 7: Data-driven  
Large-scale Optimization w. AI !!

http://javascript:void(0)
http://javascript:void(0)
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:X9ykpCP0fEIC
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Example – Anomaly Detection per node-based or full room based

RUAD: Unsupervised anomaly detection in HPC systems, FGCS23
Rule-Based Thermal Anomaly Detection for Tier-0 HPC Systems ISC22
Examon-x: a predictive maintenance framework for automatic monitoring in industrial iot systems JIOT21
Integrated energy-aware management of supercomputer hybrid cooling systems TII06
Graph Neural Networks for Anomaly Anticipation in HPC Systems ICPE23

https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:X9ykpCP0fEIC
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:AYInfyleIOsC
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=vt9PdNsAAAAJ&sortby=pubdate&citation_for_view=vt9PdNsAAAAJ:k_7cPK9k7w8C
https://scholar.google.com/citations?view_op=view_citation&hl=it&user=K5MnKxkAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=K5MnKxkAAAAJ:ufrVoPGSRksC


From sand to megawatts – Act 7: Data-driven  
Large-scale Optimization w. AI !!

1. Machine Learning models to 
predict the power consumption 
of HPC applications

2. Slurm Custom Extensions to 
schedule jobs based on their 
power

3. Interacts with power 
management

Job power prediction
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