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Mid 1980s at M.LT (Paul Fischer, Lee Ho Pushing the boundaries of fast and
and Einar Renquist) based on the accurate CFD to improve predictive
spectral element method (Patera 1984) modeling

COMMUNITY

500+ users worldwide
~40 publications per year

APPLICATIONS

Thermal hydraulics, renewables,
combustion, urban,
environmental, aeronautics and
many more

RESEARCH IMPACT

ECP, CEEC, CoEC, EXCELERAAT,
PSAAP II, NEAMS, ..

Cross-functional team of 10
about people

OPEN SOURCE INDUSTRY COLLABORATION

funded by DOE Kairos, Terrapower, Nuscale, GE,
ExxonMobill, ...
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Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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Vision: Exascale Computing Project (ECP) Lifts all U.S.
High Performance Computing to a New Trajectory

Capability
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Time
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* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh v curved meshes,
v unstructured AMR v optimized low-order support

10" order basis function non-conforming AMR, 2" order mesh
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2 Labs, 5 Universities, 30+ researchers
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> started as an early fork of libParanumal
> incompressible + low Mach Navier-Stokes solver

> MPI| + (X=0OCCA) using CPUs/GPUs
> autotuning across entire solver stack
> high-order spectral elements in space

> overset grids
> moving and deforming meshes

> conjugate heat transfer
> Lagrangian phase model

LES and RANS models
> available under github.com/Nek5000/nekRS

>

ELCP

https://www.sciencedirect.com/science/article/abs/pii/S0167819122000710

U.S. DEPARTMENT OF Office of

‘ ENERGY Science



http://github.com/Nek5000/nekRS

Variational method, similar to FEM, using Gauss-Lobatto-Legrende points
Domain partitioned into E (unstructured) high-order elements

Trial and test function represented an Nth order tensor-product polynomials
within each element (typically N=5-9)

ENA3 grid points in 3D
Low dissipation and small dispersion errors
Fast (matrix-free) operator evaluation: o(n) storage, o(nN) work
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Nek

OpenFOAM
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NekRS(MFEV-SMG), z= 100 m, Az= 3.12 m, 1.56 m, 0.78 m (n = 1287, 2567, 512%)

AMR-Wind, z= 100 m, Az= 3.12 m, 1.56 m, 0.78 m (n = 128%,256°,512%)

Misun Min et al., arXiv preprint arXiv:2210.00904

Nek requires (e.g. ~8x) less grid points for the same accuracy
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Cost per grid point competitive to low-order methods

Towards Exascale for Wind Energy Simulations, Misun Min et al., arXiv preprint arXiv:2210.00904
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« Unified models for device, memory, etc.
« Backend selection at runtime:
« Serial, OpenMP

WHAT IS OCCA?

Open - CUDA, HIP, OpenCL, Metal
Qoncurrent « Lightweight wrappers around backend APIs
Compute / « C/C++, Fortran

Architecture

« Directive based extension to C/C++

: « Transparent translation to backend
Kernel code
. Language « JIT compilation + caching

+ Alternatively, write kernels directly with

backend specific code
https://github.com/libocca/occa

« Hardware info
Command « Available backends

Line Tool « Environment variables

« Translate/compile kernels

P71 \ u.s. OF A g National Lab ylsa A °
(ZJENERGY U2 5mmina oo o rgonne

NATIONAL LABORATORY
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1946-2021

Kris Rowe, ANL



Periodic Hill at strong scaling limit
E=3.14M

N=7

1.08B gridpoints

ALCF Mira
No. 3 TOP500 2012
16384 out of 49152 nodes (33%)

16384 CPUs (16 cores each 2 hw-threads) Ramesh Balakrishnan, ANL
n/P ~ 2k (4k per core)
code: nek5000 05 _
ORNL Summit
No. 1 TOP500 2018 Z 04
88 out of 4600 nodes (2%) @ 3.5x
528 GPUs S s
n/P ~ 2M (25k per SM) £
code: nekRS .E
g 02
Summary £
~ From 33% (hero) to 2% (toy) machine usage § 0.1
~ 3.5x faster 8
~16x lower energy consumption 0o

baseline hardware hardware+algo
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~" There could be an increased risk of M“"'\
infection to somecne in the dead zone. ,
The risk is higher with hotter incoW 0.70
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The domain was
discretized into 180k
spectral elements
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T Ramesh Balakrishnan, ANL
George Giannakopoulos, ETH Zurich
Wind
aoiiaton Atmospheric Boundary Layer Flows Pebble Bed Simulations on Full Summit

GAsLs_ benchmark problem Q 352,625 spherical pebbles
Domain: 400m x 400m x 400 Q £=99 M elements

Q N=51 B gridpoints

» Q 1.4 7B per snapshot (FP32)
Laminar flow Q P=27648 V100s (all of Summit)
Q High quality all-hex mesh generated by
High speed

tessellation of Voronoi facets that are
projected onto the sphere or domain

Turbulent flow boundaries to yield hexahedral elements

Q ~300 elements / sphere

w7 3 4 s & 1 _a %
Figure 8: Turbulent flow in an annular packed bed with A’ = 352625 spheres meshed with I = 98,782, 067 spectral
Velocity Magnitude [mvs] g P T , 782, P . . o P
iy [mis] elements of order N = & (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using = Turbulent flow in the interstitial region
- . . : 27648 V100s it. The average or of pressure iterati
Flow analysis with spatial and time-averaged velocity 27648 V100s on Summit. The average number of pressure iterations per step is 6 between the randomly-packed spheres.
£=64°, N=8, n=134M (Ananias Tomboulides, Misun Min) MS121 MS220
NekRS simulation using 60 GPUs/V100s on Summit Mon 1:50pm Wed 5:20pm
Neil Lindquist (UTK) Paul Fsicher YuHsiang Lan Y. Lan, P. Fischer, E. Merzari, M. Min: All hex meshing strategies for densely-packed spheres. Int. Meshing Roundtable, 2021.
ws aresamarnr oo | Office of 4.0, oesanTmEnt ¢
@ENERGY 2 CEED Argonne® e of
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Exascale Multiphysics Nuclear Reactor Simulations for Advanced Designs

Elia Merzari®*, Steven Hamilton?, Thomas Evans®, Paul Romano¢, Paul Fischer®®f, Misun Min9, Stefan
Kerkemeier?, Yu-Hsiang Lan{, Jun Fang®, Malachi Phillips¢, Thilina Rathnayake®, Elliott Biondo®, Katherine

» Largest reactor fluid flow
simulation to date

s Coupled physics (neutron
transport)

= ~350B gridpoints

m 9000 nodes (90%) of
ORNL's Frontier

U.S. DEPARTMENT OF Ofﬁce of
6 NERGY Science

RoystonP, Noel Chalmers", Tim Warburton'

Assembly and full core simulations with ENRICO. a) Detail of CFD model in NekRS including interior of each pin.
b) Assembly Monte Carlo model. c) Temperature distribution in a cross section of the core. d) Total neutron
interaction rate in the core computed by Shift.

AAAAAAAAAAAAAAAAAA



= Documentation & training

= Tune performance for ANL's supercomputer Aurora

= Extend mixed precision capabilities

= Wall models for RANS and LES

» Extended physics: magnetohydrodynamics, chemical reactive flows, ...
= In-situ visualization

» Coupling to ML frameworks



e&e Hardware vendors focus on Al/ML workloads

L
O& High demand for complex (multiphysics) simulations

\4

® Moderate performance improvements in particular when it comes

to time-to-solution

c’ Fast changing (unstable) environment & 3rd-party integration

increases cost and complexity

—&: Meshing and post-processing capabilities need to keep up
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Mathis Bode (JSC)



Application example at JSC: TU Darmstadt Engine

Overview

LES (Star-CD) (ETHZ)
multiple cycles
validate against experiments

EXPERIMENTS (TUD)
high-resolution PIV
multiple cycles

LES (Star-CD) (ETHZ)
generate ICs at
inlet valve closure for DNS

DNS (ETHZ)
compression stroke

I. Multiple grids during compression
II. Initial conditions (interpolated U,
T fields from LES)
lll. Perform DNS using spectral
grid-to-grid interpolation



Application example at JSC: TU Darmstadt Engine

Non-reactive nekRS full engine simulations V.mag (cw/e] 60] CAD

3.1e+03

DNS of the compression-expansion stroke @2500 rpm (12 cycles) ' R0

0.0

4 moving meshes with up to
E = 9.3 million spectral elements
N = 9 -> 6.8 billion grid points
44 Tb / cycle - CAD resolved

0.27 GPU-Mcore-h / cycle (based on #cores/ CPU)

Analysis of boundary layers, turbulence, ... P (K] 601 CAD
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Application example at JSC: TU Darmstadt Engine

S
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Sketch of model evaluation simulations

—— DNS: open
......... DNS: confined
-— -~ LESI: open
LES2: open
----- LES1: confined
-— - LES2: confined P <

0.25 0.30 0.35
Time [ms]

Evaluation of multiple LES models with OpenFOAM®@JSC

Combining nekRS with other codes such as OpenFOAM to
have optimal time-to-solution and wide functionality!




Jupyter-CoEC: Simplity the usage of nekRS@JSC

Firewall
JupyterLab
JupyterLab .
‘ htps Juﬁf: ‘ _ssh - tunnel JupyterLab
i < Server
JupyterLab Extension
Client
Extension J 5
o upyter upyter
> L{z;tﬁy pd UNICORE (Notebook) RoMQ Kernel
browser Server e
hpc cluster
(%)
8 JUPITER Run Simulations
=
3
8 JUWELS CPU/GPU/Booster Pre- & Post-Processing
()
G JURECA-DC CPU/GPU Client-Server Visualization
Q.
A

Jupyter-CoEC is simple-to-use, simple-to-access in any browser!



Jupyter-CoEC: Simplity the usage of nekRS@JSC

(Oec Center of Excellence HOME RESULTS v SERVICES v EVENTS MEDIA v CONTACT
in Combustion

®

The Center of Excellence in Combustion (CoEC) has been created in order to apply exascale computing
< technologies to promote and develop advanced simulation software that can support the decarborlsabon >
goals of the European Union within the energy and transportation sectors.

https://coec-project.eu

ter-coec.jsc.fz-juelich.de




Why nekRS?

nekRS is a true exascale code
Good performance at all scales

Wide applicability: From academia to industry. From boundary
layers and convection processes to combustion and reactors.

Simple to use: Easy access via Jupyter-CoEC!

nekRS support @JSC:

General support and help
Powerful workflows
Assistance with computing time, good performance and scaling

Target code for exascale supercomputer JUPITER!

Contact: m.bode@fz-juelich.de







