ERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Code of the Month

Gabriel STAFFELBACH

AVBP

www.cerfacs.fr

Research center focused on training and technology transfer using High performance computing

Concentrate competences in HPC, numerical methods, modelling to tackle scientific problems

ALGO-COOP **CFD**

The AVBP Code

- Compressible Navier-Stokes Finite Element Solver
- Unstructured multi-element grids
 - Arbitrary Lagrangian-Eulerian Method for moving grids
 - Automatic Mesh adaptation
- Large Eddy Simulation
- Up to 3rd order space and time numerical scheme
- Reduce and Analytically Reduce chemistry
- Two-phase flow modelling (Eulerian and Lagrangian approaches)
- Perfect and Real Gas Thermodynamics
- Characteristic Boundary conditions

Z CERFACS

3

The AVBP Community

- An Open Science Code :
 - access for research and non-compete activities
 - (CORIA, IMFT, EM2C, LMFA)
 - Industrial own usage upon bilateral agreements: • GRTgaz, Total Energies, CNES, SAFRAN, AIRBUS
- 30 contributors annually
- 30-40 papers annually

• TU Munich, TU Berlin, ETHZ, University of Sherbrooke, VKI, CNRS

The AVBP Code

- 500k lines of code
- SPMD parallel approach / Domain decomposition method
 - Fortran 2003/C
 - MPI 1 and 3
 - systems(*)
- Multi-physics coupling via CWIPI (ONERA)
 - Thermal
 - Radiative
 - Structure
- Al

Full GPU offload for Reactive gaseous - static grid case - NVIDIA and Cray AMD

* non reactive as 2023-06-15, work in progress

1.4B elements simulation on 132k Rome EPYC 2 cores

Stefan Gröning, Justin S Hardi, Dmitry Suslov, Michael Oschwald, "Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor", Journal of Propulsion and Power, Volume 32 [560-573] 2016

Schmitt & Staffelbach

Parallel GPU support (OpenACC)

GPU Acceleration vs CPU : 40 core Cascade lake vs 4 V100

(2022)

These results benefitted of funding or developments from: project ATOM (DGAC/SafranTech No 2018-39), PRACE (20th Call Project Access FULLEST), EXCELLERAT (H2020 823691), EPEEC (H2020 801051) and GENCI (A0122A06074).

High fidelity simulation of a wind turbine Time: 10.869151 **AVBP Z**CERFACS

Wall-modelled Large Eddy Simulation of two inline wind turbines, Dabas et al 2022

[1] Pierella, F., Krogstad, P.-Å. et Sætran, L. (2014). Blind test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds. Renewable Energy, 70:62-77.

Dabas et al

80 windturbine farm demonstrator

Dabas et al

Time: 1795 s

X30 gain in time to solution using AMD GPUs

Adaptative Mesh

Physics informed Static mesh generation: TIC Nozzle

[6] Daviller G., Dombard J., Staffelbach G., Herpe J. & Saucereau D. « Prediction of Flow Separation and Side-Loads in Rocket Nozzle Using Large-Eddy Simulation ». Int. J. Comp. Fluid Dyn. 2020.

Automatic Mesh adaptation : Safety simulations

Meziat et al

Co-simulation learning

ECERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

COUPLING

Interface

AVBP+PhyDLL

MPMD (Multiple Program Multiple Data) mpirun -n 16 EXECAVBP : -n 2 python dl.py

[1] https://www.cerfacs.fr/avbp7x/

L			
ľ			
L			

Al and simulation

Replace sub grid-scale combustion model with AI

scale reaction rates, Combustion and Flame, Volume 203, 2019, Pages 255-264.

Thank you for your attention

Potier et al

COMBUSTION 2100x340

Dabas et al

Dabas et al

