
Introduction to OmniTrace

Gina Sitaraman, Suyash Tandon, George Markomanolis,
Jonathan Madsen, Austin Ellis, Bob Robey

EuroCC-AMD Workshop
May 5, 2023

2 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

Profiling

3 |

[Public]

Background – AMD Profilers

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

4 |

[Public]

Background – AMD Profilers

5 |

[Public]

Background – AMD Profilers

6 |

[Public]

NDA NOT REQUIRED | AMD PUBLIC

USE

OmniTrace

7 |

[Public]

Omnitrace: Application Profiling, Tracing, and Analysis

Repository: https://github.com/AMDResearch/omnitrace

Not part of ROCm stack

Refer to current documentation for recent updates

https://github.com/AMDResearch/omnitrace
https://amdresearch.github.io/omnitrace/features.html

8 |

[Public]

Installation (if required)

export OMNITRACE_VERSION=latest
export ROCM_VERSION=5.4.3
export OMNITRACE_INSTALL_DIR=</path/to/your/omnitrace/install>
wget https://github.com/AMDResearch/omnitrace/releases/${OMNITRACE_VERSION}/download/omnitrace-install.py
python3 omnitrace-install.py -p ${OMNITRACE_INSTALL_DIR} --rocm ${ROCM_VERSION}

Set up environment:
source ${OMNITRACE_INSTALL_DIR}/share/omnitrace/setup-env.sh

To use pre-built binaries, select the
version that matches your operating
system, ROCm version, etc.

Select OpenSuse operating system for
HPE/AMD system:

omnitrace-1.7.4-opensuse-15.4-ROCm-50400-
PAPI-OMPT-Python3.sh

There are .rpm and .deb files for installation also. In future versions,
binary installers for RHEL also available.

Full documentation: https://amdresearch.github.io/omnitrace/

Note: If installing from source, remember to clone the omnitrace repo recursively

https://github.com/AMDResearch/omnitrace/releases/$%7bOMNITRACE_VERSION%7d/download/omnitrace-install.py
https://amdresearch.github.io/omnitrace/

9 |

[Public]

Omnitrace instrumentation Modes

For problems, create an issue here: https://github.com/AMDResearch/omnitrace/issues
Documentation: https://amdresearch.github.io/omnitrace/

$ omnitrace [omnitrace-options] -- <CMD> <ARGS>

For more information or help use -h/--help/? flags:

Can also execute on systems using a job scheduler. For example, with

SLURM, an interactive session can be used as:

$ omnitrace -h

$ srun [options] omnitrace [omnitrace-options] -- <CMD> <ARGS>

https://github.com/AMDResearch/omnitrace/issues
https://amdresearch.github.io/omnitrace/

10 |

[Public]

$ omnitrace-avail -c perfetto
|------------------------------------|-----------------|--|
ENVIRONMENT VARIABLE	VALUE	CATEGORIES
OMNITRACE_PERFETTO_BACKEND	inprocess	custom, libomnitrace, omnitrace, perfetto
OMNITRACE_PERFETTO_BUFFER_SIZE_KB	1024000	custom, data, libomnitrace, omnitrace, perfetto
OMNITRACE_PERFETTO_FILL_POLICY	discard	custom, data, libomnitrace, omnitrace, perfetto
OMNITRACE_TRACE_DELAY	0	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_DURATION	0	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_PERIODS		custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_TRACE_PERIOD_CLOCK_ID	CLOCK_REALTIME	custom, libomnitrace, omnitrace, perfetto, profile, timemory, trace
OMNITRACE_USE_PERFETTO	true	backend, custom, libomnitrace, omnitrace, perfetto
------------------------------------	-----------------	--

Shows all runtime settings that may be tuned for perfetto

Omnitrace Configuration

$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available

hardware counters. For more information or help use -h/--help flags:

Collect information for omnitrace-related settings using shorthand -c for --categories :

$ omnitrace-avail -h

$ omnitrace-avail –c perfetto

11 |

[Public]

Omnitrace Configuration

$ omnitrace-avail --categories [options]

Get more information about run-time settings, data collection capabilities, and available

hardware counters. For more information or help use -h/--help/? flags:

Collect information for omnitrace-related settings using shorthand -c for --categories :

For brief description, use the options:

$ omnitrace-avail -h

$ omnitrace-avail –c omnitrace

$ omnitrace-avail –bd

Create a config file in $HOME:

To add description of all variables and settings, use:

Modify the config file $HOME/.omnitrace.cfg as desired to

enable and change settings:

<snip>
OMNITRACE_USE_PERFETTO = true
OMNITRACE_USE_TIMEMORY = true
OMNITRACE_USE_SAMPLING = false
OMNITRACE_USE_ROCTRACER = true
OMNITRACE_USE_ROCM_SMI = true
OMNITRACE_USE_KOKKOSP = false
OMNITRACE_USE_CAUSAL = false
OMNITRACE_USE_MPIP = true
OMNITRACE_USE_PID = true
OMNITRACE_USE_ROCPROFILER = true
OMNITRACE_USE_ROCTX = true
<snip>

Declare which config file to use by setting the environment:

$ omnitrace-avail –G $HOME/.omnitrace.cfg

$ omnitrace-avail –G $HOME/.omnitrace.cfg --all

$ export OMNITRACE_CONFIG_FILE=/path-
to/.omnitrace.cfg

Contents of the config file

Dynamic Instrumentation
Runtime Instrumentation

13 |

[Public]

Dynamic Instrumentation – Jacobi Example

Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Extra time is the overhead of dyninst reading every binary that

is loaded, not overhead of omnitrace during app execution

Parsing libraries

Functions instrumented

Outputs that will be created

https://github.com/amd/HPCTrainingExamples.git

14 |

[Public]

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Here, -v gives a verbose output from omnitrace

$ mpirun -np 1 omnitrace-instrument -v 1 --simulate --
print-available functions -- ./Jacobi_hip -g 1 1

Dynamic Instrumentation – Jacobi Example

Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

Functions found in each module

detected by omnitrace

The simulate flag does not run the executable, but only

demonstrates the available functions

https://github.com/amd/HPCTrainingExamples.git

15 |

[Public]

Dynamic Instrumentation – Jacobi Example

Clone jacobi example:

Requires ROCm and MPI install, compile:

Run the non-instrumented code on a single GPU as:

$ make

$ time .mpirun -np 1 ./Jacobi_hip -g 1 1
real 0m2.115s

$ git clone https://github.com/amd/HPCTrainingExamples.git
$ cd HPCTrainingExamples/HIP/jacobi

Only these two functions

are shown to be

instrumented

Custom include/exclude functions* with -I or -E, resp. For e.g:

$ mpirun -np 1 omnitrace-instrument -v 1 -I
'Jacobi_t::Run' 'JacobiIteration' -- ./Jacobi_hip -g 1 1

$ time mpirun -np 1 omnitrace-instrument -- ./Jacobi_hip
-g 1 1

real 1m45.742s

Include two functions to instrument

$ mpirun -np 1 omnitrace-instrument -v 1 --simulate --
print-available functions -- ./Jacobi_hip -g 1 1

https://github.com/amd/HPCTrainingExamples.git

Dynamic Instrumentation
Binary Rewrite

17 |

[Public]

Generating a new executable/library with instrumentation built-in:

Binary Rewrite – Jacobi Example

$ omnitrace-instrument [omnitrace-options] –o <new-name-
of-exec> -- <CMD> <ARGS>

This new binary will have instrumented functions

$ omnitrace-instrument -o Jacobi_hip.inst -- ./Jacobi_hip

Path to new instrumented binaryDefault instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 50" (more

overhead)

18 |

[Public]

Binary Rewrite – Jacobi Example

Generates traces for application run

Default instrumentation is main function and functions of 1024

instructions and more (for CPU)

To instrument routines with 50 or more cycles, add option "-i 50"
(more overhead)

Generating a new /library with instrumentation built-in:

Run the instrumented binary:

$ omnitrace-instrument [omnitrace-options] –o <new-

name-of-exec> -- <CMD> <ARGS>

$ omnitrace-instrument -o Jacobi_hip.inst --

./Jacobi_hip

$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g

1 1

Binary rewrite is recommended for runs with multiple ranks as

omnitrace produces separate output files for each rank

19 |

[Public]

List of Instrumented GPU Functions
$ cat omnitrace-Jacobi_hip.inst-output/2023-03-15_13.57/roctracer-0.txt

Roctracer-0.txt shows duration of

HIP API calls and GPU kernels

20 |

[Public]

Visualizing Trace

Copy perfetto-trace-0.proto to your laptop, go to https://ui.perfetto.dev/, click "Open trace file", select perfetto-trace-0.proto

Traces of CPU functions

CPU metrics

https://ui.perfetto.dev/

21 |

[Public]

Visualizing Trace

Zoom in to investigate regions of interest

Zoomed in

22 |

[Public]

Visualizing Trace

Zoom in to investigate regions of interest

Flow Events

Select metrics of interest to view

close together

GPU characteristics

Hardware Counters

24 |

[Public]

Hardware Counters – List All

$ mpirun –np 1 omnitrace-avail --all

A very small subset of the counters shown here

CPU Hardware Counters

GPU Hardware Counters

Environment

Variables

Components, Categories

25 |

[Public]

Commonly Used GPU Counters

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

Create a config file in $HOME:

Modify the config file $HOME/.omnitrace.cfg to add

desired metrics and for concerned GPU#ID:

To profile desired metrics for all participating GPUs:

$ omnitrace-avail –G $HOME/.omnitrace.cfg

…
OMNITRACE_ROCM_EVENTS = GPUBusy:device=0,
Wavefronts:device=0, MemUnitBusy:device=0
…

…
OMNITRACE_ROCM_EVENTS = GPUBusy, Wavefronts,
MemUnitBusy
…

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

26 |

[Public]

Execution with Hardware Counters

(after modifying cfg file to set up OMNITRACE_ROCM_EVENTS with GPU metrics)
$ mpirun -np 1 omnitrace-run -- ./Jacobi_hip.inst -g 1 1

GPU hardware

counters

27 |

[Public]

Visualization with Hardware Counters

GPU hardware counters

CPU activity

GPU activity

ROCTX Regions

Tracing Multiple Ranks

29 |

[Public]

Profiling Multiple MPI Ranks – Jacobi Example

All output files are generated for each rank

Generating a new /library with instrumentation built-in:

Run the instrumented binary with 2 ranks:

$ omnitrace-instrument -o Jacobi_hip.inst --

./Jacobi_hip

$ mpirun -np 2 omnitrace-run --./Jacobi_hip.inst -g

2 1

30 |

[Public]

Visualizing Traces from Multiple Ranks - Separately

31 |

[Public]

Visualizing Traces from Multiple Ranks - Combined

Use the following command to merge and concatenate multiple traces:

$ cat perfetto-trace-0.proto perfetto-trace-1.proto > allprocesses.proto

Two processes seen in

combined trace file

Zooming in helps understand load balance issues

Statistical Sampling

33 |

[Public]

Sampling Call-Stack (I)

OMNITRACE_USE_SAMPLING = false

OMNITRACE_USE_SAMPLING = true; OMNITRACE_SAMPLING_FREQ = 100 (100 samples per second)

Scroll down all the way in Perfetto to see the sampling output!

Each sample shows the

call stack at that time

34 |

[Public]

Sampling Call-Stack (II)

Zoom in call-stack sampling

Sampling data is annotated with (S)

Other Features

36 |

[Public]

Kernel Durations

$ cat omnitrace-Jacobi_hip.inst-output/2023-03-15_13.57/wall_clock-0.txt

If you do not see a wall_clock.txt dumped by omnitrace, try modify the config file $HOME/.omnitrace.cfg and

enable OMNITRACE_USE_TIMEMORY:

…

OMNITRACE_USE_PERFETTO = true

OMNITRACE_USE_TIMEMORY = true

OMNITRACE_USE_SAMPLING = false

…

Text file is for quick reference. JSON output is easy to script for and can be read by Hatchet,

a Python package (https://hatchet.readthedocs.io/en/latest/)

Call Stack

Durations

https://hatchet.readthedocs.io/en/latest/

37 |

[Public]

Kernel Durations (flat profile)

OMNITRACE_USE_TIMEMORY = true

OMNITRACE_FLAT_PROFILE = true

Edit in your omnitrace.cfg:

Use flat profile to see aggregate duration of kernels and

functions

38 |

[Public]

User API

Omnitrace provides an API to control the instrumentation

API Call Description

int omnitrace_user_start_trace(void) Enable tracing on this thread and all

subsequently created threads

int omnitrace_user_stop_trace(void) Disable tracing on this thread and all

subsequently created threads

int omnitrace_user_start_thread_trace(void) Enable tracing on this specific thread. Does

not apply to subsequently created threads

int omnitrace_user_stop_thread_trace(void) Disable tracing on this specific thread. Does

not apply to subsequently created threads

int omnitrace_user_push_region(void) Start user defined region

int omnitrace_user_pop_region(void) End user defined region, FILO (first in last

out) is expected

All the API calls: https://amdresearch.github.io/omnitrace/user_api.html

https://amdresearch.github.io/omnitrace/user_api.html

39 |

[Public]

OpenMP®

We use the example omnitrace/examples/openmp/

Build the code with CMake:

Use the openmp-lu binary, which can be executed with:

Create a new instrumented binary:

Execute the new binary:

$ cmake -B build

$ export OMP_NUM_THREADS=4
$ srun –n 1 –c 4 ./openmp-lu

$ srun -n 1 omnitrace-instrument -o openmp-lu.inst --
./openmp-lu

$ srun -n 1 –c 4 omnitrace-run -- ./openmp-lu.inst

40 |

[Public]

OpenMP® Visualization

41 |

[Public]

Python™

Python documentation: https://amdresearch.github.io/omnitrace/python.html

The omnitrace Python package is installed in

/path/omnitrace_install/lib/pythonX.Y/site-packages/omnitrace

Setup the environment:

We use the Fibonacci example in

omnitrace/examples/python/source.py

Execute the python program with:

Profiled data is dumped in output directory:

$ export PYTHONPATH=/path/omnitrace/lib/python/site-
packages/:${PYTHONPATH}

$ omnitrace-python ./external.py

$ cat omnitrace-source-output/timestamp/wall_clock.txt

42 |

[Public]

Visualizing Python™ Perfetto Tracing

43 |

[Public]

Kokkos

Omnitrace can instrument Kokkos applications too.

Edit the $HOME/.omnitrace.cfg file and enable omnitrace:

Use the openmp-lu binary, which can be executed with:

Profiling with omnitrace produces *kokkos*.txt files:

...
OMNITRACE_USE_KOKKOSP = true
...

$ cat kokkos_memory0.txt

44 |

[Public]

Visualizing Kokkos with Perfetto Trace

• Visualize perfetto-trace-0.proto (with sampling enabled)

Causal Profiling

46 |

[Public]

Causal Profiling

• Causal profiling requires multiple “experiments”
• Each experiment has two independent variables:

• Function/LOC selected for experiment

• Virtual speed amount

• Requires multiple runs of the application
• For each function/LOC:

• Baseline generation (0% virtual speedup)

• 1+ virtual speedups > 0%

• Speedup prediction is highly dependent on baseline

• Progress point are required
• Exception end to end runs

• Supports: sample space of fixed speedups, binary scope pattern, function scope pattern, source scope
pattern, line scope pattern

• For now it is for CPU threads and workload, work in progress for GPU kernels

• GUI available via PyPI: omnitrace-causal-viewer

• For now you can use: https://plasma-umass.org/coz/

• We use the example: https://github.com/AMDResearch/omnitrace/tree/main/examples/causal

• Documentation: https://amdresearch.github.io/omnitrace/causal_profiling.html

https://plasma-umass.org/coz/
https://github.com/AMDResearch/omnitrace/tree/main/examples/causal
https://amdresearch.github.io/omnitrace/causal_profiling.html

47 |

[Public]

Causal Profiling – Example

48 |

[Public]

Causal Profiling - Recommendations

• Generate a flat profile to get familiar with the functions that take most of the time

• Insert throughput progress points in high-traffic areas

• Reduce the virtual speedup sampling space

• Default: 0-100 in increments of 5

• Use “scoping” to restrict the experiment sampling space

• E.g. Binary scope, source scope, function scope, line scope

• Use the function mode initially because it reduces experiment sampling space

• Use the line mode in combination with a strict function scope

49 |

[Public]

Advanced options

• Source scope restricted to lines 100 and 110 of causal.cpp

• -m line

• -S "causal\\.cpp:(100|110)“

• Function scope, exclude functions which start with “kokkos::” or

“std:enable_if”

• -m func

• -FE "^(Kokkos::|std::enable_if)"

50 |

[Public]

Example – Causal-cpu-omni

We have two functions one fast and one slow that we can control their ratio

srun -n 1 -c2 ./causal-cpu-omni

Fraction: 70.00, iterations: 50, random seed: 4093769362 :: slow = 200000000, fast = 140000000, expected ratio = 70.00,
sync every 1 iterations

executing iteration: 0

executing iteration: 10

executing iteration: 20

executing iteration: 30

executing iteration: 40

executing iteration: 49

slow_func() took 10000.891 ms

fast_func() took 7000.705 ms

total is 10001.183 ms

ratio is 70.001 %

rdiff is 0.001 %

Source code: https://github.com/AMDResearch/omnitrace/tree/main/examples/causal

https://github.com/AMDResearch/omnitrace/tree/main/examples/causal

51 |

[Public]

Script to run various cases

52 |

[Public]

Progress points

• Progress points could be MPI, Kokkos, roctracer and other calls.

• You can use the USER API, declare in your code:

include <omnitrace/causal.h>

define CAUSAL_PROGRESS OMNITRACE_CAUSAL_PROGRESS

define CAUSAL_PROGRESS_NAMED(LABEL) OMNITRACE_CAUSAL_PROGRESS_NAMED(LABEL)

define CAUSAL_BEGIN(LABEL) OMNITRACE_CAUSAL_BEGIN(LABEL)

define CAUSAL_END(LABEL) OMNITRACE_CAUSAL_END(LABEL)

Link also with the library libomnitrace-user.

53 |

[Public]

Plots

54 |

[Public]

Other Executables

• omnitrace-sample

• For sampling with low overhead, use omnitrace-sample

• Use omnitrace-sample --help to get relevant options

• Settings in the OmniTrace config file will be used by omnitrace-sample

• Example invocation to get a flat tracing profile on Host and Device (-PTHD), excluding all components (-E all) and

including only rocm-smi, roctracer, rocprofiler and roctx components (-I ...)
mpirun -np 1 omnitrace-sample -PTHD -E all -I rocm-smi -I roctracer -I rocprofiler -I roctx -- ./Jacobi_hip -g 1 1

• omnitrace-causal

• Invokes causal profiling

• omnitrace-critical-trace

• Post-processing tool for critical-trace data output by omnitrace

Current documentation: https://amdresearch.github.io/omnitrace/development.html#executables

https://amdresearch.github.io/omnitrace/development.html#executables

55 |

[Public]

Tips & Tricks

• My Perfetto timeline seems weird how can I check the clock skew?

• Set OMNITRACE_VERBOSE=1 or higher for verbose mode and it will print the timestamp skew

• It takes too long to map rocm-smi samples to kernels.

• Temporarily set OMNITRACE_USE_ROCM_SMI=OFF

• What is the best way to profile multi-process runs?

• Use OmniTrace's binary rewrite (-o) option to instrument the binary first, run the instrumented binary with

mpirun/srun

• If you are doing binary rewrite and you do not get information about kernels, set:

• HSA_TOOLS_LIB=libomnitrace.so in the env. and set OMNITRACE_USE_ROCTRACER=ON in the cfg file

• My HIP application hangs in different points, what do I do?

• Try to set HSA_ENABLE_INTERRUPT=0 in the environment, this changes how HIP runtime is notified when GPU

kernels complete

• My Perfetto trace is too big, can I decrease it?

• Yes, with v1.7.3 and later declare OMNITRACE_PERFETTO_ANNOTATIONS to false

• I want to remove the many rows of CPU frequency lines from the Perfetto trace

• Declare the OMNITRACE_USE_PROCESS_SAMPLING = false

56 |

[Public]

Summary

• OmniTrace is a powerful tool to understand CPU + GPU activity

• Ideal for an initial look at how an application runs

• Leverages several other tools and combines their data into a comprehensive output file

• Some tools used are AMD uProf, rocprof, rocm-smi, roctracer, perf, etc.

• Easy to visualize traces in Perfetto

• Includes several features:

• Dynamic Instrumentation either at Runtime or using Binary Rewrite

• Statistical Sampling for call-stack info

• Process sampling, monitoring of system metrics during application run

• Causal Profiling

• Critical Path Tracing

Questions?

58 |

[Public]

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken
in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and
Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon™, Instinct™, EPYC, Infinity Fabric, ROCm™, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

	Slide 1: Introduction to OmniTrace
	Slide 2: Profiling
	Slide 3: Background – AMD Profilers
	Slide 4: Background – AMD Profilers
	Slide 5: Background – AMD Profilers
	Slide 6: OmniTrace
	Slide 7: Omnitrace: Application Profiling, Tracing, and Analysis
	Slide 8: Installation (if required)
	Slide 9: Omnitrace instrumentation Modes
	Slide 10: Omnitrace Configuration
	Slide 11: Omnitrace Configuration
	Slide 12: Dynamic Instrumentation
	Slide 13: Dynamic Instrumentation – Jacobi Example
	Slide 14: Dynamic Instrumentation – Jacobi Example
	Slide 15: Dynamic Instrumentation – Jacobi Example
	Slide 16: Dynamic Instrumentation
	Slide 17: Binary Rewrite – Jacobi Example
	Slide 18: Binary Rewrite – Jacobi Example
	Slide 19: List of Instrumented GPU Functions
	Slide 20: Visualizing Trace
	Slide 21: Visualizing Trace
	Slide 22: Visualizing Trace
	Slide 23: Hardware Counters
	Slide 24: Hardware Counters – List All
	Slide 25: Commonly Used GPU Counters
	Slide 26: Execution with Hardware Counters
	Slide 27: Visualization with Hardware Counters
	Slide 28: Tracing Multiple Ranks
	Slide 29: Profiling Multiple MPI Ranks – Jacobi Example
	Slide 30: Visualizing Traces from Multiple Ranks - Separately
	Slide 31: Visualizing Traces from Multiple Ranks - Combined
	Slide 32: Statistical Sampling
	Slide 33: Sampling Call-Stack (I)
	Slide 34: Sampling Call-Stack (II)
	Slide 35: Other Features
	Slide 36: Kernel Durations
	Slide 37: Kernel Durations (flat profile)
	Slide 38: User API
	Slide 39: OpenMP®
	Slide 40: OpenMP® Visualization
	Slide 41: Python™
	Slide 42: Visualizing Python™ Perfetto Tracing
	Slide 43: Kokkos
	Slide 44: Visualizing Kokkos with Perfetto Trace
	Slide 45: Causal Profiling
	Slide 46: Causal Profiling
	Slide 47: Causal Profiling – Example
	Slide 48: Causal Profiling - Recommendations
	Slide 49: Advanced options
	Slide 50: Example – Causal-cpu-omni
	Slide 51: Script to run various cases
	Slide 52: Progress points
	Slide 53: Plots
	Slide 54: Other Executables
	Slide 55: Tips & Tricks
	Slide 56: Summary
	Slide 57: Questions?
	Slide 58: DISCLAIMERS AND ATTRIBUTIONS
	Slide 59

