
AFFINITY – Placement,

Order and Binding

CASTIEL Training on LUMI

May 2-5, 2023

Gina Sitaraman, Bob Robey

2 |

[Public]

Authors and Contributors

• Tom Papatheodore, ORNL

• Marcus Wagner, HPE

• Alfio Lazzaro, HPE

• Georgios Markomanolis, AMD

• Bill Brantley, AMD

• Noel Chalmers, AMD

• Kjetil Haugen, AMD

3 |

[Public]

Agenda

• A look at Modern Heterogenous Architectures

• What is Affinity? Why is it important?

• Understanding Node Topology

• Placement Considerations on LUMI nodes

• Case Studies: Affinity Settings for Different Types of Applications

4 |

[Public]

Modern Hardware Architectures

• Increasingly complex with multiple resources

• sockets

• cores

• GPUs

• memory controllers

• NICs (Network Interface Cards)

• Peripherals such as GPUs and memory controllers are local to a CPU socket

• Operating System (OS) controls process scheduling but is not designed for parallel and high-

performance computing jobs

• Processes may be preempted

• When rescheduled on a new core, cached data has to be moved to the caches close to the new core

• OS is unaware of parallel processes or their threads

5 |

[Public]

LUMI Node Architecture

Courtesy: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes

• 64 cores on a single

socket CPU

• 4 MI250X GPUs, each

with 2 GCDs
• Each GCD is presented

as a GPU device to
rocm-smi

• 512 GB of DDR4 RAM

• Infinity Fabric™ links

between GCDs and

between GCDs and

CPU cores

• 4 NICs attached to odd

numbered GCDs

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes

6 |

[Public]

NUMA (Non-Uniform Memory Access)

• Multi-processor systems where

resources are divided into

multiple nodes or domains

• A NUMA domain is a grouping of

cores, memory and other

peripherals

• Each CPU core is attached to its

own local memory while being

able to access memory attached

to other processors

• Local memory accesses are fast

while remote memory accesses

have a higher latency, especially

those that cross a socket-to-

socket interconnect

• With local accesses, memory

contention from CPUs is reduced

resulting in increased bandwidth

Two hardware threads running

on a single physical CPU core

8 physical cores share an L3 cache

7 |

[Public]

NUMA configuration (NPS)

• LUMI nodes may be configured at boot time with 1 or 4 NUMA domains Per Socket (NPS)

• Site administers this setting, users cannot change it

• NPS1:

• 1 NUMA domain per socket

• Memory accesses interleaved across all 8 memory channels

• More uniform bandwidth but slightly higher latency than NPS4 case

• More tolerant of hot spots in memory channels

• For example, if you are running only 1 MPI rank, you may benefit from a higher CPU memory bandwidth

• NPS4:

• 4 NUMA domains per socket

• Memory accesses in a domain interleaved across 2 memory channels

• Potential for higher memory bandwidth due to reduced contention and lower latency

• May be vulnerable to hot spots

• With NPS4, affinity is really important – need to spread processes across the NUMA domains

• LUMI nodes are currently configured with NPS4

8 |

[Public]

What is Affinity?

• Affinity is a way for processes to indicate preference for hardware components (memory, cores, NICs, caches)

• Processes can be pinned to resources typically belonging to the same NUMA domain

• Why is Affinity important?

• Improves cache reuse

• Improves NUMA memory locality

• Reduces contention for resources

• Lowers latency

• Reduces variability from run to run

• Where is Affinity needed?

• Extremely important for processes running on CPU cores and the resulting placement of their data in CPU memory

• When running on GPUs, affinity is less critical unless there is a bottleneck with the location of data in host memory
• Memory copies between host and device, page migration and direct memory access may be affected if data in host memory is not in same NUMA domain

• Within a GPU, affinity is far less important

• For parallel processes, Affinity is more than binding:

• Placement

• Order

9 |

[Public]

Process Placement

• Placement indicates where a process is placed

• Motivation: maximize available resources for a particular application/workload

• We want to use all resources (cores, caches, GPUs, NICs, memory controllers, etc...)

• Processes may have multiple threads (OpenMP®) and require separate cores for each thread

• We may want to use only hardware/physical cores and not virtual cores

• We may not have enough memory per process, we may want to skip some cores

• We may want to reserve some cores for system operations to reduce jitter for timing purposes

• MPI prefers "gang scheduling" whereas the OS doesn't know the processes are connected

• When a process waits to be scheduled by the OS, it may cause all other processes to wait longer at a synchronization barrier

• Until the last decade, placement was not that important

• Only 2-8 cores on a CPU, uniform architectures, no GPUs

• Distributed or Shared memory systems

• The OS controlled placement of processes, and that was okay

• On hardware today, controlling placement may help

• Avoid oversubscription of compute resources and unnecessary contention for common resources

• Avoid non-uniform use of compute resources where some processors are used, and some are idle

• Avoid sub-optimal communication performance when processes are placed too widely apart

• Prevent migration of processes

• Affinity controls in the OS and MPI have greatly improved and changed

10 |

[Public]

Order of Processes

• Order defines how processes of a parallel job are distributed across the sockets of the node

• Why is order important?

• Processes communicating with each other are close together for lower latency and higher bandwidth

• Load balancing heavy workloads by scattering across compute resources

• Round-robin or Cyclic:

• Processes are distributed in a round-robin fashion across sockets.

• For example, if there are 8 MPI ranks and 2 sockets, rank 0 is scheduled on socket 0, rank 1 on socket 1, rank 2 on

socket 0, rank 3 on socket 1 and so on.

• Maximizes available cache for each process, and evenly utilizes the resources of a node

• Packed or Close:

• Consecutive MPI ranks are assigned to processors in the same socket until it is filled before scheduling a rank on a

different socket

• For example, if there are 8 MPI ranks and 2 sockets each with a 4 core CPU, ranks 0-3 are scheduled on socket 0,

and ranks 4-7 are scheduled on socket 1

• Improved performance due to data locality if ranks that communicate the most are accessing data in the same

memory node and sharing cache

Understanding Node Topology

12 |

[Public]

Understanding Node Topology

• Even on a LUMI type system, the configuration may be different

• Number of NUMA domains per socket may change at boot time

• Some physical cores may be reserved

• Virtual cores may be enabled or disabled

• Some tools can help understand your system better

• lstopo: from hwloc package to visualize node architecture

• lscpu: gathers and displays CPU architecture information

• numactl –H: shows available NUMA nodes in the system and CPU core affinity for each node

• rocm-smi --showtopo: Displays the NUMA node and the CPU affinity associated with every GPU device.

13 |

[Public]

• lstopo -p out.svg

• 1 socket = 1 package

• 4 NUMA nodes in

socket

If you can't read this, it

proves how complex the

architecture is :)

LUMI Node

Topology

14 |

[Public]

Understanding Node Topology – lstopo NUMA domain #1

• 8 physical cores + 8 virtual

cores share an L3 cache

• Two sets of 8 physical cores

in a NUMA domain

• Two GCDs in a NUMA

domain

• One high-speed NIC per

NUMA domain

15 |

[Public]

Understanding CPU Architecture

lscpu

Hyperthreading

is enabled

Architecture: x86_64
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 1
NUMA node(s): 4
Model name: AMD EPYC 7A53 64-Core Processor
Frequency boost: enabled
CPU MHz: 3488.045
L1d cache: 2 MiB
L1i cache: 2 MiB
L2 cache: 32 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-15,64-79
NUMA node1 CPU(s): 16-31,80-95
NUMA node2 CPU(s): 32-47,96-111
NUMA node3 CPU(s): 48-63,112-127

Hardware thread

affinity to NUMA

domains

OS sees 128 cores or

hardware threads (HWT)

16 |

[Public]

Understanding NUMA Configuration

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 0 size: 128411 MB
node 0 free: 119892 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 129015 MB
node 1 free: 124248 MB
node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 96 97 98 99 100 101 102 103 104 105 106 107 108
109 110 111
node 2 size: 129015 MB
node 2 free: 124702 MB
node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 112 113 114 115 116 117 118 119 120 121 122 123
124 125 126 127
node 3 size: 128998 MB
node 3 free: 124737 MB
node distances:
node 0 1 2 3

0: 10 12 12 12
1: 12 10 12 12
2: 12 12 10 12
3: 12 12 12 10

numactl -H

Here, hardware threads 0-15 and 64-79 belong to NUMA domain 0

More obvious on multiple socket nodes

17 |

[Public]

Understanding NUMA Configuration for GPUs

rocm-smi --showtopo

================================== Numa Nodes ==================================
GPU[0] : (Topology) Numa Node: 3
GPU[0] : (Topology) Numa Affinity: 3
GPU[1] : (Topology) Numa Node: 3
GPU[1] : (Topology) Numa Affinity: 3
GPU[2] : (Topology) Numa Node: 1
GPU[2] : (Topology) Numa Affinity: 1
GPU[3] : (Topology) Numa Node: 1
GPU[3] : (Topology) Numa Affinity: 1
GPU[4] : (Topology) Numa Node: 0
GPU[4] : (Topology) Numa Affinity: 0
GPU[5] : (Topology) Numa Node: 0
GPU[5] : (Topology) Numa Affinity: 0
GPU[6] : (Topology) Numa Node: 2
GPU[6] : (Topology) Numa Affinity: 2
GPU[7] : (Topology) Numa Node: 2
GPU[7] : (Topology) Numa Affinity: 2
============================= End of ROCm SMI Log ==============================

GCDs 4 and 5 are located

in NUMA domain 0

Placement Considerations on LUMI
nodes

19 |

[Public]

Placement Considerations on LUMI nodes

• Each GCD is connected to one of the NUMA domains via a high-speed Infinity Fabric™ link

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• NICs are directly connected to odd numbered GCDs

• Multiple processes can run on the same GCD

Choose rank order and placement

carefully to optimize communication

20 |

[Public]

Placement Considerations on LUMI nodes

• Each GCD is connected to a set of 8 CPU cores via a high-speed Infinity Fabric™ link

• Pinning a process and its threads on cores closest to the GCD it uses improves the efficiency of H2D and D2H

transfers

Cores 0-7 are closest

to GCD 4

Cores 48-55 are

closest to GCD 0

21 |

[Public]

Placement Considerations on LUMI nodes

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• 4 Infinity Fabric™ links connect the two GCDs for a combined 200 GB/s peak bandwidth in each direction

• Place pairs of ranks that communicate the most on GCDs of the same MI250X GPU

• Peak Bandwidth in each

direction of Infinity

Fabric™ link shown

• Even though bandwidths

are different between

GCDs, communication

using device buffers will

be at least as fast as

communication using host

buffers

22 |

[Public]

Placement Considerations on LUMI nodes

• On a LUMI node, there are 4 NICs

• NICs are directly connected to odd

numbered GCDs

• Inter-node MPI Communication using

device buffers is expected to be faster

(GPU Aware MPI)

• Cray provides environment variables

for mapping processes to the NIC in

the same NUMA domain

23 |

[Public]

Placement Considerations on LUMI nodes

• Multiple processes on the same GCD

• AMD GPUs natively support running multiple MPI ranks on the same device where all processes share the available

resources and improve utilization

• Depending on the application's communication pattern, pack ranks that communicate most on the same device

Here, 4 MPI ranks are running on GCD 4, and are pinned to cores 0, 2, 4 and 6 respectively

24 |

[Public]

Choose Rank Order Carefully to Optimize Communication

• Intra-node communication is faster than inter-node communication

• Application expert may know the best placement

• For example, stencil near neighbors should be placed next to each other

• HPE's CrayPat profiler may be used to detect communication pattern between MPI ranks and generate a

rank order file that can then be supplied to Cray MPICH

• HPE's grid_order utility may also be used to determine optimal rank order, check with HPE for more

details

• Slurm binding options

25 |

[Public]

How do I verify if I got the right Affinity?

• Use top or htop to visualize where processes and their threads are running

• If using OpenMPI, mpirun --report-bindings can be used to show the binding of each process as a

mask

• For MPI + OpenMP® programs, you can use the following simple "Hello, World" program to check

mappings: https://code.ornl.gov/olcf/hello_mpi_omp

• For MPI + OpenMP® + HIP programs, a simple "Hello, World" program with HIP can be used to verify

mappings: https://code.ornl.gov/olcf/hello_jobstep

• HPE's xthi script: https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

• Example code from Essentials of Parallel Computing, Chapter 14 can be used to verify mappings for

OpenMP®, MPI and MPI+OpenMP cases: https://github.com/essentialsofparallelcomputing/Chapter14

 e t Practice: Run cript or “hello world” program prior to your application in the ame

Slurm batch job to confirm affinity setting

https://code.ornl.gov/olcf/hello_mpi_omp
https://code.ornl.gov/olcf/hello_jobstep
https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c
https://github.com/essentialsofparallelcomputing/Chapter14

26 |

[Public]

Low noise mode on LUMI – A Small Detour

Slurm setting in

LUMI reserves

Core 0 for system

operations

Helps reduce jitter

and variability from

run to run

lstopo sees only 7 cores in the first CPU set

because lstopo was run with Slurm

For applications that are bandwidth bound, GPU bound or not multi-threaded, losing one core may not

be a big deal. Losing a core in CPU compute bound applications will hurt performance.

Where is Core 0?

27 |

[Public]

Case Studies for Setting Affinity

• Serial Applications with OpenMP®

• Using numactl

• Using OpenMP® settings, OMP_PLACES, OMP_PROC_BIND

• Using GNU OpenMP® environment variables, GOMP_CPU_AFFINITY

• MPI Applications + OpenMP® + HIP

• Using Slurm binding options
• 1 MPI rank per GCD

• 1 MPI rank per GCD, 8 OpenMP threads per rank

• 2 MPI ranks per GCD

Case Studies: Serial Application +
OpenMP®

Setting CPU Affinity

29 |

[Public]

Controlling Affinity for Serial Applications – numactl

• Use numactl from libnuma-dev Linux® package to control NUMA policy for processes and shared

memory

numactl –C 2,3 –m 0 ./exe

^-- Run exe on CPU cores 2 or 3 and allocate mem on NUMA node 0

numactl –C 1-7 -i 0,1 ./exe

^-- Run exe on cores 1-7 and interleave memory allocations on NUMA nodes 0 and 1

• More detailed documentation can be found in the numactl manpage

• To verify bindings, run htop or top

30 |

[Public]

Controlling Affinity for Serial Applications – OpenMP® settings

• OpenMP® 5.2 standard specifies environment variables to control affinity settings

• OMP_PLACES indicates hardware resources

• Can be an abstract name: cores, threads, sockets, l1_caches or numa_domains (definitions are implementation specific)

• Can be an explicit list of places described by non-negative numbers

export OMP_PLACES=threads # each place is a single hardware thread

export OMP_PLACES={0,1},{2,3},{4,5},{6,7} # Run process and its threads on given cores

export OMP_PLACES={0:$OMP_NUM_THREADS:2}

• OMP_PROC_BIND indicates how OpenMP® threads are bound to resources

• Can be a comma separated list of primary, close or spread, indicating policies for nested levels of parallelism

• Can be false to disable thread affinity

export OMP_PROC_BIND=close # Bind threads close to primary thread on given places

export OMP_PROC_BIND=spread # Spread threads evenly on given places

export OMP_PROC_BIND=primary # Bind threads on the same place as the primary thread

• OMP_DISPLAY_AFFINITY=TRUE helps verify bindings

• OMP_AFFINITY_FORMAT helps define the format when displaying OpenMP affinity information

export OMP_AFFINITY_FORMAT="Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"

• More details can be found in the OpenMP® Specification: https://www.openmp.org/spec-html/5.0/openmpch6.htm

31 |

[Public]

Controlling Affinity for Serial Applications – GOMP_CPU_AFFINITY

• If using GNU OpenMP® implementation, we can set up CPU core affinity for a process and its threads

using the environment variable, GOMP_CPU_AFFINITY

export GOMP_CPU_AFFINITY=0-64:4

export OMP_NUM_THREADS=16

./exe

In the above example, we expect the 16 threads of the process to be bound to cores 0, 4, 8, 12, 16, ... 60

• Note: Same setting can be used to define affinity of threads for each process in an MPI job as well

Case Studies: MPI + OpenMP® + HIP

Setting CPU + GPU affinity

33 |

[Public]

Controlling Affinity of MPI Applications

• OpenMPI

• mpirun offers several options for process placement, order and binding

• See manpage for mpirun for extensive documentation of all affinity related options

• Slurm

• Slurm offers a rich set of options to control binding of tasks to hardware resources

• See manpages for srun or slurm.conf for documentation of all affinity related options

• MPICH does not have many affinity control options

• Use native process manager, mpiexec.hydra

• Slurm integration using compile time option "--with-pmi=slurm --with-pm=no"

• Be ready to read man pages as options may change

34 |

[Public]

MPI with OpenMP® Example

/* ---
MPI + OpenMP Hello, World program to help understand process
and thread mapping to physical CPU cores and hardware threads
--- */
int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
char name[MPI_MAX_PROCESSOR_NAME];
int resultlength;
MPI_Get_processor_name(name, &resultlength);

int hwthread;
int thread_id = 0;
#pragma omp parallel default(shared) private(hwthread, thread_id)
{

thread_id = omp_get_thread_num();
hwthread = sched_getcpu();
printf("MPI %03d - OMP %03d - HWT %03d - Node %s\n", rank, thread_id, hwthread, name);

}
MPI_Finalize();
return 0;

}

See full code at: https://code.ornl.gov/olcf/hello_mpi_omp

Sample output:

MPI 001 - OMP 000 - HWT 003 - Node nid007564
MPI 001 - OMP 001 - HWT 004 - Node nid007564

https://code.ornl.gov/olcf/hello_mpi_omp

35 |

[Public]

MPI + OpenMP + HIP Example

printf("MPI %03d - OMP %03d - HWT %03d - Node %s - RT_GPU_ID %s - GPU_ID %s - Bus_ID %s\n",
rank, thread_id, hwthread, name, rt_gpu_id_list.c_str(), gpu_id_list, busid_list.c_str());

See full code at: https://code.ornl.gov/olcf/hello_jobstep

rank MPI_Comm_rank

thread_id omp_get_thread_num()

hwthread sched_getcpu()

name MPI_Get_processor_name

gpu_id ROCR_VISIBLE_DEVICES

busid hipDeviceGetPCIBusId

rt_gpu_id HIP runtime GPU ID i.e, 0, 1, .. 7

MPI 000 - OMP 000 - HWT 001 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 001 - OMP 000 - HWT 002 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

Sample output:

https://code.ornl.gov/olcf/hello_jobstep

36 |

[Public]

Mapping Processes to GCDs on LUMI – Expected Mapping

• We need the following GCD to core mapping for optimal performance on LUMI, and we want to see a core

picked from each set for each rank

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

37 |

[Public]

Setting GPU Device Visibility on LUMI nodes

• By default, processes see all GPU devices. So, device visibility needs to be restricted for each process.

• May be able to allocate only some GPUs using Slurm – this sets ROCR_VISIBLE_DEVICES or

HIP_VISIBLE_DEVICES to the set of GPUs requested depending on the site's Slurm configuration

• HIP_VISIBLE_DEVICES restricts GPU devices visible to the HIP runtime

• ROCR_VISIBLE_DEVICES restricts GPU devices visible to ROCr runtime

• The HIP runtime depends on the ROCr runtime, so the HIP layer can only see the subset of devices selected by

ROCR_VISIBLE_DEVICES

38 |

[Public]

MPI 000 - OMP 000 - HWT 001 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 000 - HWT 002 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 000 - HWT 003 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 003 - OMP 000 - HWT 004 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 004 - OMP 000 - HWT 005 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 005 - OMP 000 - HWT 006 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 006 - OMP 000 - HWT 007 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 007 - OMP 000 - HWT 008 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de

Run with the script:

$ N=1; salloc -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 --mem 0 --exclusive -t 05:00
$ N=1; srun -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) ./set_gpu_device.sh
./hello_jobstep

Mapping Processes to GCDs on LUMI

A simple way: Initialize ROCR_VISIBLE_DEVICES using SLURM_LOCALID

Example script from man mpi on LUMI:
$ cat set_gpu_device.sh
#!/bin/bash
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID
exec $*

Only hardware threads 001-008 were selected

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:

We got different GPU devices per task

Mapping is not optimal

Rank 0 got HWT 1 and GCD 0

39 |

[Public]

MPI 001 - OMP 000 - HWT 061 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 000 - HWT 028 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 005 - OMP 000 - HWT 015 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 006 - OMP 000 - HWT 034 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 007 - OMP 000 - HWT 044 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 000 - OMP 000 - HWT 053 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 002 - OMP 000 - HWT 022 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 004 - OMP 000 - HWT 004 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

Mapping Processes to GCDs on LUMI

We need proper GPU + CPU affinity for each task. Use Slurm’ mask_cpu binding option.

$ N=1; salloc -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 --mem 0 --exclusive -t 05:00
$ export OMP_NUM_THREADS=1
$ N=1; c=fe;
MYMASK="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}00000000,0x${c}00
00000000"; srun -A ${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) --cpu-
bind=mask_cpu:$MYMASK ./set_gpu_device.sh ./hello_jobstep

One HWT from each core set is selected for each task

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:

1 GPU device is selected per task

But how do I generate this mask??

40 |

[Public]

Generating CPU Mask for Low Noise Mode

$ cat generate_mask.py
#!/usr/bin/env python3
cpu_of_rank_thread = [# sparing first core of each 8-core CCD

[49,50,51,52,53,54,55] , # local rank 0
[57,58,59,60,61,62,63] , # local rank 1
[17,18,19,20,21,22,23] , # local rank 2
[25,26,27,28,29,30,31] , # local rank 3
[1, 2, 3, 4, 5, 6, 7] , # local rank 4
[9,10,11,12,13,14,15] , # local rank 5
[33,34,35,36,37,38,39] , # local rank 6
[41,42,43,44,45,46,47]] # local rank 7

num_ranks = len(cpu_of_rank_thread)
mask = ""
for rank in range(num_ranks):

sum = 0
num_threads_this_rank = len(cpu_of_rank_thread[rank])
for thread in range(num_threads_this_rank):

cpu = cpu_of_rank_thread[rank][thread]
two_pow = 2 ** cpu
sum += two_pow
if thread == num_threads_this_rank - 1:

if rank > 0:
mask += ","

mask += hex(sum)
if rank == num_ranks - 1:

print("mask=", mask)
print(mask.replace("0x",""))

Courtesy: Marcus Wagner, HPE

In this example, we are skipping the

first core of each CPU set

Sample output:

$ python3 generate_mask_lumi_order.py
mask=
0xfe000000000000,0xfe00000000000000,0xfe0000,0xfe000000,0xfe,0xfe00,
0xfe00000000,0xfe0000000000

41 |

[Public]

Case Studies: 1 MPI rank per GCD, 2 OpenMP® threads per rank

$ export OMP_NUM_THREADS=2
$ export OMP_PROC_BIND=close
$ N=1; c=fe;
MYMASK="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}00000000,0x${c}0000000000"; srun -A
${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) --cpu-bind=mask_cpu:$MYMASK ./set_gpu_device.sh
./hello_jobstep

MPI 001 - OMP 000 - HWT 057 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 001 - OMP 001 - HWT 058 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 000 - OMP 000 - HWT 049 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 001 - HWT 050 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 007 - OMP 000 - HWT 041 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 007 - OMP 001 - HWT 042 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 006 - OMP 000 - HWT 033 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 006 - OMP 001 - HWT 034 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 004 - OMP 000 - HWT 001 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 004 - OMP 001 - HWT 002 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 005 - OMP 000 - HWT 009 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 005 - OMP 001 - HWT 010 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 003 - OMP 000 - HWT 025 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 003 - OMP 001 - HWT 026 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 002 - OMP 000 - HWT 017 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 002 - OMP 001 - HWT 018 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9

Combining OpenMP® settings with

srun options, we can pin a separate

core for each thread of each rank

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:

42 |

[Public]

Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

Selecting GPU device

We need a new script to select GPU devices such that ranks are closely packed on GCDs (i.e., ranks 0 and 1 use GCD 0,

ranks 2 and 3 use GCD 1, etc.)

$ cat set_gpu_device_multirank.sh
#!/bin/bash
export ranks_per_node=$(($SLURM_NTASKS/$SLURM_NNODES))
let NUM_GPUS=8
let ranks_per_gpu=$(((${ranks_per_node}+${NUM_GPUS}-1)/${NUM_GPUS}))
let my_gpu=$(($SLURM_LOCALID/$ranks_per_gpu))
export ROCR_VISIBLE_DEVICES=$my_gpu
exec $*

43 |

[Public]

Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

Generating the CPU Mask
$ cat generate_mask_lumi_order_16ranks.py
#!/usr/bin/env python3
cpu_of_rank_thread = [

[49,50,51] , # local rank 0
[52,53,54] , # local rank 1
[57,58,59] , # local rank 2
[60,61,62] , # local rank 3
[17,18,19] , # local rank 4
[20,21,22] , # local rank 5
[25,26,27] , # local rank 6
[28,29,30] , # local rank 7
[1, 2, 3] , # local rank 8
[4, 5, 6] , # local rank 9
[9,10,11] , # local rank 10
[12,13,14] , # local rank 11
[33,34,35] , # local rank 12
[36,37,38] , # local rank 13
[41,42,43] , # local rank 14
[44,45,46]] # local rank 15

num_ranks = len(cpu_of_rank_thread)
mask = ""
for rank in range(num_ranks):

sum = 0
num_threads_this_rank =

len(cpu_of_rank_thread[rank])
for thread in range(num_threads_this_rank):

cpu = cpu_of_rank_thread[rank][thread]
two_pow = 2 ** cpu
sum += two_pow
if thread == num_threads_this_rank - 1:

if rank > 0:
mask += ","

mask += hex(sum)
if rank == num_ranks - 1:

print("mask=", mask)
print(mask.replace("0x",""))

Courtesy: Marcus Wagner, HPE

Skip first and last core of

each 8-core set

$ python3 generate_mask_lumi_order_16ranks.py
mask=
0xe000000000000,0x70000000000000,0xe00000000000000,0x7000000000000000,0xe0000,0x700000,0xe000000,0x70000000,0xe,0x70,0xe00,0x700
0,0xe00000000,0x7000000000,0xe0000000000,0x700000000000

44 |

[Public]

Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

$ export OMP_NUM_THREADS=3
$ N=1;
MYMASK="0xe000000000000,0x70000000000000,0xe00000000000000,0x7000000000000000,0xe0000,0x700000,0xe000000,0x70000000,0xe,0x70,0xe00,0
x7000,0xe00000000,0x7000000000,0xe0000000000,0x700000000000"; srun -A ${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core
1 -n $((N*8*2)) --cpu-bind=mask_cpu:$MYMASK ./set_gpu_device_multirank.sh ./hello_jobstep

<snip>

MPI 001 - OMP 000 - HWT 052 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 001 - HWT 053 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 002 - HWT 054 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 003 - OMP 000 - HWT 060 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 002 - HWT 062 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 001 - HWT 061 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 000 - HWT 057 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 001 - HWT 058 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 002 - HWT 059 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 000 - OMP 000 - HWT 049 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 001 - HWT 050 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 002 - HWT 051 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

Courtesy: Marcus Wagner, HPE

With NPS4, we want to get the full CPU socket bandwidth. We need to have

processes/threads on each core in each NUMA domain.

In addition, we oversubscribe the GCD with 2 ranks to better utilize its resources.

Ranks 0 and 1 got GCD 0,

Ranks 2 and 3 got GCD 1

Threads are closely packed according to specified mask

45 |

[Public]

Summary

• In parallel applications, Affinity involves Placement, Order and Binding

• Affinity is important for hybrid applications on the complex architectures of today

• Higher memory bandwidth

• Lower latency

• Optimize communication

• Avoid excessive thread/process migration

• Affinity can be achieved in many ways

• Need to know the architecture

• Need to know the performance limiters of the application and design the best strategy to use resources

• Need to know the communication pattern between processes

• Need to know how to control placement using a combination of MPI, OpenMP®, Pthread, Slurm options

46 |

[Public]

References

• Frontier User Guide, Oak Ridge Leadership Compute Facility, Oak Ridge National

Laboratory, https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#

• Parallel and High Performance Computing, Robert Robey and Yuliana Zamora, Manning Publications, May 2021

• Essentials of Parallel Computing, Chapter 14 Code

Examples: https://github.com/essentialsofparallelcomputing/Chapter14

• Code Examples from Tom Papatheodore, ORNL:

• https://code.ornl.gov/olcf/hello_mpi_omp

• https://code.ornl.gov/olcf/hello_jobstep

• OpenMP® Specification: https://www.openmp.org/

• MPICH, https://www.mpich.org/

• OpenMPI, https://www.open-mpi.org/

• Slurm, https://slurm.schedmd.com/

• Performance Analysis of CP2K Code for Ab Initio Molecular Dynamics on CPUs and GPUs, Dewi Yokelson, Nikolay V.

Tkachenko, Robert Robey, Ying Wai Li, and Pavel A. Dub, Journal of Chemical Information and Modeling 2022 62 (10),

2378-2386, DOI: 10.1021/acs.jcim.1c01538

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://github.com/essentialsofparallelcomputing/Chapter14
https://code.ornl.gov/olcf/hello_mpi_omp
https://code.ornl.gov/olcf/hello_jobstep
https://www.openmp.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://slurm.schedmd.com/

47 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes

no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVI E ‘AS IS.” AM MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPE T TO THE ONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

AMD, the AMD Arrow logo, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

© 2023 Advanced Micro Devices, Inc. All rights reserved.

	Slide 1: AFFINITY – Placement, Order and Binding
	Slide 2: Authors and Contributors
	Slide 3: Agenda
	Slide 4: Modern Hardware Architectures
	Slide 5: LUMI Node Architecture
	Slide 6: NUMA (Non-Uniform Memory Access)
	Slide 7: NUMA configuration (NPS)
	Slide 8: What is Affinity?
	Slide 9: Process Placement
	Slide 10: Order of Processes
	Slide 11: Understanding Node Topology
	Slide 12: Understanding Node Topology
	Slide 13: LUMI Node Topology
	Slide 14: Understanding Node Topology – lstopo NUMA domain #1
	Slide 15: Understanding CPU Architecture
	Slide 16: Understanding NUMA Configuration
	Slide 17: Understanding NUMA Configuration for GPUs
	Slide 18: Placement Considerations on LUMI nodes
	Slide 19: Placement Considerations on LUMI nodes
	Slide 20: Placement Considerations on LUMI nodes
	Slide 21: Placement Considerations on LUMI nodes
	Slide 22: Placement Considerations on LUMI nodes
	Slide 23: Placement Considerations on LUMI nodes
	Slide 24: Choose Rank Order Carefully to Optimize Communication
	Slide 25: How do I verify if I got the right Affinity?
	Slide 26: Low noise mode on LUMI – A Small Detour
	Slide 27: Case Studies for Setting Affinity
	Slide 28: Case Studies: Serial Application + OpenMP® Setting CPU Affinity
	Slide 29: Controlling Affinity for Serial Applications – numactl
	Slide 30: Controlling Affinity for Serial Applications – OpenMP® settings
	Slide 31: Controlling Affinity for Serial Applications – GOMP_CPU_AFFINITY
	Slide 32: Case Studies: MPI + OpenMP® + HIP Setting CPU + GPU affinity
	Slide 33: Controlling Affinity of MPI Applications
	Slide 34: MPI with OpenMP® Example
	Slide 35: MPI + OpenMP + HIP Example
	Slide 36: Mapping Processes to GCDs on LUMI – Expected Mapping
	Slide 37: Setting GPU Device Visibility on LUMI nodes
	Slide 38: Mapping Processes to GCDs on LUMI
	Slide 39: Mapping Processes to GCDs on LUMI
	Slide 40: Generating CPU Mask for Low Noise Mode
	Slide 41: Case Studies: 1 MPI rank per GCD, 2 OpenMP® threads per rank
	Slide 42: Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank Selecting GPU device
	Slide 43: Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank Generating the CPU Mask
	Slide 44: Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank
	Slide 45: Summary
	Slide 46: References
	Slide 47: Disclaimer
	Slide 48

