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Modern Hardware Architectures

• Increasingly complex with multiple resources

• sockets

• cores

• GPUs

• memory controllers

• NICs (Network Interface Cards)

• Peripherals such as GPUs and memory controllers are local to a CPU socket

• Operating System (OS) controls process scheduling but is not designed for parallel and high-

performance computing jobs

• Processes may be preempted

• When rescheduled on a new core, cached data has to be moved to the caches close to the new core

• OS is unaware of parallel processes or their threads
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LUMI Node Architecture

Courtesy: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes

• 64 cores on a single 

socket CPU

• 4 MI250X GPUs, each 

with 2 GCDs
• Each GCD is presented 

as a GPU device to 
rocm-smi

• 512 GB of DDR4 RAM

• Infinity Fabric™ links 

between GCDs and 

between GCDs and 

CPU cores

• 4 NICs attached to odd 

numbered GCDs

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#frontier-compute-nodes
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NUMA (Non-Uniform Memory Access)

• Multi-processor systems where 

resources are divided into 

multiple nodes or domains

• A NUMA domain is a grouping of 

cores, memory and other 

peripherals

• Each CPU core is attached to its 

own local memory while being 

able to access memory attached 

to other processors

• Local memory accesses are fast 

while remote memory accesses 

have a higher latency, especially 

those that cross a socket-to-

socket interconnect

• With local accesses, memory 

contention from CPUs is reduced 

resulting in increased bandwidth

Two hardware threads running 

on a single physical CPU core

8 physical cores share an L3 cache
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NUMA configuration (NPS)

• LUMI nodes may be configured at boot time with 1 or 4 NUMA domains Per Socket (NPS)

• Site administers this setting, users cannot change it

• NPS1:

• 1 NUMA domain per socket

• Memory accesses interleaved across all 8 memory channels

• More uniform bandwidth but slightly higher latency than NPS4 case

• More tolerant of hot spots in memory channels

• For example, if you are running only 1 MPI rank, you may benefit from a higher CPU memory bandwidth

• NPS4:

• 4 NUMA domains per socket

• Memory accesses in a domain interleaved across 2 memory channels

• Potential for higher memory bandwidth due to reduced contention and lower latency

• May be vulnerable to hot spots

• With NPS4, affinity is really important – need to spread processes across the NUMA domains

• LUMI nodes are currently configured with NPS4
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What is Affinity?

• Affinity is a way for processes to indicate preference for hardware components (memory, cores, NICs, caches)

• Processes can be pinned to resources typically belonging to the same NUMA domain

• Why is Affinity important?

• Improves cache reuse

• Improves NUMA memory locality

• Reduces contention for resources

• Lowers latency

• Reduces variability from run to run

• Where is Affinity needed?

• Extremely important for processes running on CPU cores and the resulting placement of their data in CPU memory

• When running on GPUs, affinity is less critical unless there is a bottleneck with the location of data in host memory
• Memory copies between host and device, page migration and direct memory access may be affected if data in host memory is not in same NUMA domain

• Within a GPU, affinity is far less important

• For parallel processes, Affinity is more than binding:

• Placement

• Order
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Process Placement

• Placement indicates where a process is placed

• Motivation: maximize available resources for a particular application/workload

• We want to use all resources (cores, caches, GPUs, NICs, memory controllers, etc...)

• Processes may have multiple threads (OpenMP®) and require separate cores for each thread

• We may want to use only hardware/physical cores and not virtual cores

• We may not have enough memory per process, we may want to skip some cores

• We may want to reserve some cores for system operations to reduce jitter for timing purposes

• MPI prefers "gang scheduling" whereas the OS doesn't know the processes are connected

• When a process waits to be scheduled by the OS, it may cause all other processes to wait longer at a synchronization barrier

• Until the last decade, placement was not that important

• Only 2-8 cores on a CPU, uniform architectures, no GPUs

• Distributed or Shared memory systems

• The OS controlled placement of processes, and that was okay

• On hardware today, controlling placement may help

• Avoid oversubscription of compute resources and unnecessary contention for common resources

• Avoid non-uniform use of compute resources where some processors are used, and some are idle

• Avoid sub-optimal communication performance when processes are placed too widely apart

• Prevent migration of processes

• Affinity controls in the OS and MPI have greatly improved and changed
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Order of Processes

• Order defines how processes of a parallel job are distributed across the sockets of the node

• Why is order important?

• Processes communicating with each other are close together for lower latency and higher bandwidth

• Load balancing heavy workloads by scattering across compute resources

• Round-robin or Cyclic:

• Processes are distributed in a round-robin fashion across sockets.

• For example, if there are 8 MPI ranks and 2 sockets, rank 0 is scheduled on socket 0, rank 1 on socket 1, rank 2 on 

socket 0, rank 3 on socket 1 and so on.

• Maximizes available cache for each process, and evenly utilizes the resources of a node

• Packed or Close:

• Consecutive MPI ranks are assigned to processors in the same socket until it is filled before scheduling a rank on a 

different socket

• For example, if there are 8 MPI ranks and 2 sockets each with a 4 core CPU, ranks 0-3 are scheduled on socket 0, 

and ranks 4-7 are scheduled on socket 1

• Improved performance due to data locality if ranks that communicate the most are accessing data in the same 

memory node and sharing cache



Understanding Node Topology
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Understanding Node Topology

• Even on a LUMI type system, the configuration may be different

• Number of NUMA domains per socket may change at boot time

• Some physical cores may be reserved

• Virtual cores may be enabled or disabled

• Some tools can help understand your system better

• lstopo: from hwloc package to visualize node architecture

• lscpu: gathers and displays CPU architecture information

• numactl –H: shows available NUMA nodes in the system and CPU core affinity for each node

• rocm-smi --showtopo: Displays the NUMA node and the CPU affinity associated with every GPU device.
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• lstopo -p out.svg

• 1 socket = 1 package

• 4 NUMA nodes in 

socket

If you can't read this, it 

proves how complex the 

architecture is :)

LUMI Node 

Topology
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Understanding Node Topology – lstopo NUMA domain #1

• 8 physical cores + 8 virtual 

cores share an L3 cache

• Two sets of 8 physical cores 

in a NUMA domain

• Two GCDs in a NUMA 

domain

• One high-speed NIC per 

NUMA domain
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Understanding CPU Architecture

lscpu

Hyperthreading 

is enabled

Architecture: x86_64
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 1
NUMA node(s): 4
Model name: AMD EPYC 7A53 64-Core Processor
Frequency boost: enabled
CPU MHz: 3488.045
L1d cache: 2 MiB
L1i cache: 2 MiB
L2 cache: 32 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-15,64-79
NUMA node1 CPU(s): 16-31,80-95
NUMA node2 CPU(s): 32-47,96-111
NUMA node3 CPU(s): 48-63,112-127

Hardware thread 

affinity to NUMA 

domains

OS sees 128 cores or 

hardware threads (HWT)
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Understanding NUMA Configuration

available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
node 0 size: 128411 MB
node 0 free: 119892 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 129015 MB
node 1 free: 124248 MB
node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 96 97 98 99 100 101 102 103 104 105 106 107 108 
109 110 111
node 2 size: 129015 MB
node 2 free: 124702 MB
node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 112 113 114 115 116 117 118 119 120 121 122 123 
124 125 126 127
node 3 size: 128998 MB
node 3 free: 124737 MB
node distances:
node 0 1 2 3

0: 10 12 12 12
1: 12 10 12 12
2: 12 12 10 12
3: 12 12 12 10

numactl -H

Here, hardware threads 0-15 and 64-79 belong to NUMA domain 0

More obvious on multiple socket nodes
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Understanding NUMA Configuration for GPUs 

rocm-smi --showtopo

================================== Numa Nodes ==================================
GPU[0] : (Topology) Numa Node: 3
GPU[0] : (Topology) Numa Affinity: 3
GPU[1] : (Topology) Numa Node: 3
GPU[1] : (Topology) Numa Affinity: 3
GPU[2] : (Topology) Numa Node: 1
GPU[2] : (Topology) Numa Affinity: 1
GPU[3] : (Topology) Numa Node: 1
GPU[3] : (Topology) Numa Affinity: 1
GPU[4] : (Topology) Numa Node: 0
GPU[4] : (Topology) Numa Affinity: 0
GPU[5] : (Topology) Numa Node: 0
GPU[5] : (Topology) Numa Affinity: 0
GPU[6] : (Topology) Numa Node: 2
GPU[6] : (Topology) Numa Affinity: 2
GPU[7] : (Topology) Numa Node: 2
GPU[7] : (Topology) Numa Affinity: 2
============================= End of ROCm SMI Log ==============================

GCDs 4 and 5 are located 

in NUMA domain 0



Placement Considerations on LUMI 
nodes
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Placement Considerations on LUMI nodes

• Each GCD is connected to one of the NUMA domains via a high-speed Infinity Fabric™ link

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• NICs are directly connected to odd numbered GCDs

• Multiple processes can run on the same GCD

Choose rank order and placement 

carefully to optimize communication
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Placement Considerations on LUMI nodes

• Each GCD is connected to a set of 8 CPU cores via a high-speed Infinity Fabric™ link

• Pinning a process and its threads on cores closest to the GCD it uses improves the efficiency of H2D and D2H 

transfers

Cores 0-7 are closest 

to GCD 4

Cores 48-55 are 

closest to GCD 0
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Placement Considerations on LUMI nodes

• Memory bandwidth is highest between GCDs of the same MI250X GPU

• 4 Infinity Fabric™ links connect the two GCDs for a combined 200 GB/s peak bandwidth in each direction

• Place pairs of ranks that communicate the most on GCDs of the same MI250X GPU

                                                               
           

                         
             

                     
           

                    
                               

           
                    
           

                    
           

                    
           

                    
           

                                                               
           

                                                                           
                                                                                        

             

• Peak Bandwidth in each 

direction of Infinity 

Fabric™ link shown

• Even though bandwidths 

are different between 

GCDs, communication 

using device buffers will 

be at least as fast as 

communication using host 

buffers



22 |

[Public]

Placement Considerations on LUMI nodes

• On a LUMI node, there are 4 NICs

• NICs are directly connected to odd 

numbered GCDs

• Inter-node MPI Communication using 

device buffers is expected to be faster 

(GPU Aware MPI)

• Cray provides environment variables 

for mapping processes to the NIC in 

the same NUMA domain
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Placement Considerations on LUMI nodes

• Multiple processes on the same GCD

• AMD GPUs natively support running multiple MPI ranks on the same device where all processes share the available 

resources and improve utilization

• Depending on the application's communication pattern, pack ranks that communicate most on the same device

Here, 4 MPI ranks are running on GCD 4, and are pinned to cores 0, 2, 4 and 6 respectively
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Choose Rank Order Carefully to Optimize Communication

• Intra-node communication is faster than inter-node communication

• Application expert may know the best placement

• For example, stencil near neighbors should be placed next to each other

• HPE's CrayPat profiler may be used to detect communication pattern between MPI ranks and generate a 

rank order file that can then be supplied to Cray MPICH

• HPE's grid_order utility may also be used to determine optimal rank order, check with HPE for more 

details

• Slurm binding options
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How do I verify if I got the right Affinity?

• Use top or htop to visualize where processes and their threads are running

• If using OpenMPI, mpirun --report-bindings can be used to show the binding of each process as a 

mask

• For MPI + OpenMP® programs, you can use the following simple "Hello, World" program to check 

mappings: https://code.ornl.gov/olcf/hello_mpi_omp

• For MPI + OpenMP® + HIP programs, a simple "Hello, World" program with HIP can be used to verify 

mappings: https://code.ornl.gov/olcf/hello_jobstep

• HPE's xthi script: https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

• Example code from Essentials of Parallel Computing, Chapter 14 can be used to verify mappings for 

OpenMP®, MPI and MPI+OpenMP cases: https://github.com/essentialsofparallelcomputing/Chapter14

 e t Practice: Run  cript or “hello world” program prior to your application in the  ame 

Slurm batch job to confirm affinity setting

https://code.ornl.gov/olcf/hello_mpi_omp
https://code.ornl.gov/olcf/hello_jobstep
https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c
https://github.com/essentialsofparallelcomputing/Chapter14
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Low noise mode on LUMI – A Small Detour

Slurm setting in 

LUMI reserves 

Core 0 for system 

operations

Helps reduce jitter 

and variability from 

run to run

lstopo sees only 7 cores in the first CPU set 

because lstopo was run with Slurm

For applications that are bandwidth bound, GPU bound or not multi-threaded, losing one core may not 

be a big deal. Losing a core in CPU compute bound applications will hurt performance.

Where is Core 0?



27 |

[Public]

Case Studies for Setting Affinity

• Serial Applications with OpenMP®

• Using numactl

• Using OpenMP® settings, OMP_PLACES, OMP_PROC_BIND

• Using GNU OpenMP® environment variables, GOMP_CPU_AFFINITY

• MPI Applications + OpenMP® + HIP

• Using Slurm binding options
• 1 MPI rank per GCD

• 1 MPI rank per GCD, 8 OpenMP threads per rank

• 2 MPI ranks per GCD



Case Studies: Serial Application + 
OpenMP®

Setting CPU Affinity
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Controlling Affinity for Serial Applications – numactl

• Use numactl from libnuma-dev Linux® package to control NUMA policy for processes and shared 

memory

numactl –C 2,3 –m 0 ./exe

^-- Run exe on CPU cores 2 or 3 and allocate mem on NUMA node 0

numactl –C 1-7 -i 0,1 ./exe

^-- Run exe on cores 1-7 and interleave memory allocations on NUMA nodes 0 and 1

• More detailed documentation can be found in the numactl manpage

• To verify bindings, run htop or top
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Controlling Affinity for Serial Applications – OpenMP® settings

• OpenMP® 5.2 standard specifies environment variables to control affinity settings

• OMP_PLACES indicates hardware resources

• Can be an abstract name: cores, threads, sockets, l1_caches or numa_domains (definitions are implementation specific)

• Can be an explicit list of places described by non-negative numbers

export OMP_PLACES=threads # each place is a single hardware thread

export OMP_PLACES={0,1},{2,3},{4,5},{6,7} # Run process and its threads on given cores

export OMP_PLACES={0:$OMP_NUM_THREADS:2}

• OMP_PROC_BIND indicates how OpenMP® threads are bound to resources

• Can be a comma separated list of primary, close or spread, indicating policies for nested levels of parallelism

• Can be false to disable thread affinity

export OMP_PROC_BIND=close # Bind threads close to primary thread on given places

export OMP_PROC_BIND=spread # Spread threads evenly on given places

export OMP_PROC_BIND=primary # Bind threads on the same place as the primary thread

• OMP_DISPLAY_AFFINITY=TRUE helps verify bindings

• OMP_AFFINITY_FORMAT helps define the format when displaying OpenMP affinity information

export OMP_AFFINITY_FORMAT="Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"

• More details can be found in the OpenMP® Specification: https://www.openmp.org/spec-html/5.0/openmpch6.htm
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Controlling Affinity for Serial Applications – GOMP_CPU_AFFINITY

• If using GNU OpenMP® implementation, we can set up CPU core affinity for a process and its threads 

using the environment variable, GOMP_CPU_AFFINITY

export GOMP_CPU_AFFINITY=0-64:4

export OMP_NUM_THREADS=16

./exe

In the above example, we expect the 16 threads of the process to be bound to cores 0, 4, 8, 12, 16, ... 60

• Note: Same setting can be used to define affinity of threads for each process in an MPI job as well



Case Studies: MPI + OpenMP® + HIP

Setting CPU + GPU affinity
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Controlling Affinity of MPI Applications

• OpenMPI

• mpirun offers several options for process placement, order and binding

• See manpage for mpirun for extensive documentation of all affinity related options

• Slurm

• Slurm offers a rich set of options to control binding of tasks to hardware resources

• See manpages for srun or slurm.conf for documentation of all affinity related options

• MPICH does not have many affinity control options

• Use native process manager, mpiexec.hydra

• Slurm integration using compile time option "--with-pmi=slurm --with-pm=no"

• Be ready to read man pages as options may change
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MPI with OpenMP® Example

/* -------------------------------------------------------------
MPI + OpenMP Hello, World program to help understand process
and thread mapping to physical CPU cores and hardware threads
------------------------------------------------------------- */
int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
char name[MPI_MAX_PROCESSOR_NAME];
int resultlength;
MPI_Get_processor_name(name, &resultlength);

int hwthread;
int thread_id = 0;
#pragma omp parallel default(shared) private(hwthread, thread_id)
{

thread_id = omp_get_thread_num();
hwthread = sched_getcpu();
printf("MPI %03d - OMP %03d - HWT %03d - Node %s\n", rank, thread_id, hwthread, name);

}
MPI_Finalize();
return 0;

}

See full code at: https://code.ornl.gov/olcf/hello_mpi_omp

Sample output:

MPI 001 - OMP 000 - HWT 003 - Node nid007564
MPI 001 - OMP 001 - HWT 004 - Node nid007564

https://code.ornl.gov/olcf/hello_mpi_omp
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MPI + OpenMP + HIP Example

printf("MPI %03d - OMP %03d - HWT %03d - Node %s - RT_GPU_ID %s - GPU_ID %s - Bus_ID %s\n",
rank, thread_id, hwthread, name, rt_gpu_id_list.c_str(), gpu_id_list, busid_list.c_str());

See full code at: https://code.ornl.gov/olcf/hello_jobstep

rank MPI_Comm_rank

thread_id omp_get_thread_num()

hwthread sched_getcpu()

name MPI_Get_processor_name

gpu_id ROCR_VISIBLE_DEVICES

busid hipDeviceGetPCIBusId

rt_gpu_id HIP runtime GPU ID i.e, 0, 1, .. 7

MPI 000 - OMP 000 - HWT 001 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 001 - OMP 000 - HWT 002 - Node nid005116 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6

Sample output:

https://code.ornl.gov/olcf/hello_jobstep
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Mapping Processes to GCDs on LUMI – Expected Mapping

• We need the following GCD to core mapping for optimal performance on LUMI, and we want to see a core 

picked from each set for each rank

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47
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Setting GPU Device Visibility on LUMI nodes

• By default, processes see all GPU devices. So, device visibility needs to be restricted for each process.

• May be able to allocate only some GPUs using Slurm – this sets ROCR_VISIBLE_DEVICES or 

HIP_VISIBLE_DEVICES to the set of GPUs requested depending on the site's Slurm configuration

• HIP_VISIBLE_DEVICES restricts GPU devices visible to the HIP runtime

• ROCR_VISIBLE_DEVICES restricts GPU devices visible to ROCr runtime

• The HIP runtime depends on the ROCr runtime, so the HIP layer can only see the subset of devices selected by 

ROCR_VISIBLE_DEVICES
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MPI 000 - OMP 000 - HWT 001 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 000 - HWT 002 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 000 - HWT 003 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 003 - OMP 000 - HWT 004 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 004 - OMP 000 - HWT 005 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 005 - OMP 000 - HWT 006 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 006 - OMP 000 - HWT 007 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 007 - OMP 000 - HWT 008 - Node nid007556 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de

Run with the script:

$ N=1; salloc -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 --mem 0 --exclusive -t 05:00
$ N=1; srun -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) ./set_gpu_device.sh 
./hello_jobstep

Mapping Processes to GCDs on LUMI

A simple way: Initialize ROCR_VISIBLE_DEVICES using SLURM_LOCALID

Example script from man mpi on LUMI:
$ cat set_gpu_device.sh
#!/bin/bash
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID
exec $*

Only hardware threads 001-008 were selected

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:

We got different GPU devices per task

Mapping is not optimal

Rank 0 got HWT 1 and GCD 0



39 |

[Public]

MPI 001 - OMP 000 - HWT 061 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 000 - HWT 028 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 005 - OMP 000 - HWT 015 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 006 - OMP 000 - HWT 034 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 007 - OMP 000 - HWT 044 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 000 - OMP 000 - HWT 053 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 002 - OMP 000 - HWT 022 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 004 - OMP 000 - HWT 004 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1

Mapping Processes to GCDs on LUMI

We need proper GPU + CPU affinity for each task. Use Slurm’ mask_cpu binding option.

$ N=1; salloc -A $MYPROJ -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 --mem 0 --exclusive -t 05:00
$ export OMP_NUM_THREADS=1 
$ N=1; c=fe;
MYMASK="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}00000000,0x${c}00
00000000"; srun -A ${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) --cpu-
bind=mask_cpu:$MYMASK ./set_gpu_device.sh ./hello_jobstep

One HWT from each core set is selected for each task

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:

1 GPU device is selected per task

But how do I generate this mask??
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Generating CPU Mask for Low Noise Mode

$ cat generate_mask.py
#!/usr/bin/env python3
cpu_of_rank_thread = [ # sparing first core of each 8-core CCD

[49,50,51,52,53,54,55] , # local rank 0
[57,58,59,60,61,62,63] , # local rank 1
[17,18,19,20,21,22,23] , # local rank 2
[25,26,27,28,29,30,31] , # local rank 3
[ 1, 2, 3, 4, 5, 6, 7] , # local rank 4
[ 9,10,11,12,13,14,15] , # local rank 5
[33,34,35,36,37,38,39] , # local rank 6
[41,42,43,44,45,46,47] ] # local rank 7

num_ranks = len(cpu_of_rank_thread)
mask = ""
for rank in range(num_ranks):

sum = 0
num_threads_this_rank = len(cpu_of_rank_thread[rank])
for thread in range( num_threads_this_rank ):

cpu = cpu_of_rank_thread[rank][thread]
two_pow = 2 ** cpu
sum += two_pow
if thread == num_threads_this_rank - 1:

if rank > 0:
mask += ","

mask += hex(sum)
if rank == num_ranks - 1:

print("mask=", mask)
print(mask.replace("0x",""))

Courtesy: Marcus Wagner, HPE

In this example, we are skipping the 

first core of each CPU set

Sample output:

$ python3 generate_mask_lumi_order.py
mask=    
0xfe000000000000,0xfe00000000000000,0xfe0000,0xfe000000,0xfe,0xfe00,
0xfe00000000,0xfe0000000000
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Case Studies: 1 MPI rank per GCD, 2 OpenMP® threads per rank

$ export OMP_NUM_THREADS=2
$ export OMP_PROC_BIND=close
$ N=1; c=fe; 
MYMASK="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}00000000,0x${c}0000000000"; srun -A 
${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core 1 -n $((N*8)) --cpu-bind=mask_cpu:$MYMASK ./set_gpu_device.sh 
./hello_jobstep

MPI 001 - OMP 000 - HWT 057 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 001 - OMP 001 - HWT 058 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 000 - OMP 000 - HWT 049 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 001 - HWT 050 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 007 - OMP 000 - HWT 041 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 007 - OMP 001 - HWT 042 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 7 - Bus_ID de
MPI 006 - OMP 000 - HWT 033 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 006 - OMP 001 - HWT 034 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 6 - Bus_ID d9
MPI 004 - OMP 000 - HWT 001 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 004 - OMP 001 - HWT 002 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 4 - Bus_ID d1
MPI 005 - OMP 000 - HWT 009 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 005 - OMP 001 - HWT 010 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 5 - Bus_ID d6
MPI 003 - OMP 000 - HWT 025 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 003 - OMP 001 - HWT 026 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 3 - Bus_ID ce
MPI 002 - OMP 000 - HWT 017 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9
MPI 002 - OMP 001 - HWT 018 - Node nid007255 - RT_GPU_ID 0 - GPU_ID 2 - Bus_ID c9

Combining OpenMP® settings with 

srun options, we can pin a separate 

core for each thread of each rank

GCD ID 0 1 2 3 4 5 6 7

CPU set 48-55 56-63 16-23 24-31 0-7 8-15 32-39 40-47

Expected mapping:
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Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

Selecting GPU device

We need a new script to select GPU devices such that ranks are closely packed on GCDs (i.e., ranks 0 and 1 use GCD 0, 

ranks 2 and 3 use GCD 1, etc.)

$ cat set_gpu_device_multirank.sh
#!/bin/bash
export ranks_per_node=$(($SLURM_NTASKS/$SLURM_NNODES))
let NUM_GPUS=8
let ranks_per_gpu=$(((${ranks_per_node}+${NUM_GPUS}-1)/${NUM_GPUS}))
let my_gpu=$(($SLURM_LOCALID/$ranks_per_gpu))
export ROCR_VISIBLE_DEVICES=$my_gpu
exec $*
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Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

Generating the CPU Mask
$ cat generate_mask_lumi_order_16ranks.py
#!/usr/bin/env python3
cpu_of_rank_thread = [

[49,50,51] , # local rank 0
[52,53,54] , # local rank 1
[57,58,59] , # local rank 2
[60,61,62] , # local rank 3
[17,18,19] , # local rank 4
[20,21,22] , # local rank 5
[25,26,27] , # local rank 6
[28,29,30] , # local rank 7
[ 1, 2, 3] , # local rank 8
[ 4, 5, 6] , # local rank 9
[ 9,10,11] , # local rank 10
[12,13,14] , # local rank 11
[33,34,35] , # local rank 12
[36,37,38] , # local rank 13
[41,42,43] , # local rank 14
[44,45,46] ] # local rank 15

num_ranks = len(cpu_of_rank_thread)
mask = ""
for rank in range(num_ranks):

sum = 0
num_threads_this_rank = 

len(cpu_of_rank_thread[rank])
for thread in range( num_threads_this_rank ):

cpu = cpu_of_rank_thread[rank][thread]
two_pow = 2 ** cpu
sum += two_pow
if thread == num_threads_this_rank - 1:

if rank > 0:
mask += ","

mask += hex(sum)
if rank == num_ranks - 1:

print("mask=", mask)
print(mask.replace("0x",""))

Courtesy: Marcus Wagner, HPE

Skip first and last core of 

each 8-core set

$ python3 generate_mask_lumi_order_16ranks.py
mask= 
0xe000000000000,0x70000000000000,0xe00000000000000,0x7000000000000000,0xe0000,0x700000,0xe000000,0x70000000,0xe,0x70,0xe00,0x700
0,0xe00000000,0x7000000000,0xe0000000000,0x700000000000
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Case Studies: 2 MPI ranks per GCD, 3 OpenMP® threads per rank

$ export OMP_NUM_THREADS=3
$ N=1; 
MYMASK="0xe000000000000,0x70000000000000,0xe00000000000000,0x7000000000000000,0xe0000,0x700000,0xe000000,0x70000000,0xe,0x70,0xe00,0
x7000,0xe00000000,0x7000000000,0xe0000000000,0x700000000000"; srun -A ${MYPROJ} -p small-g -N $N --gpus $((N*8)) --threads-per-core 
1 -n $((N*8*2)) --cpu-bind=mask_cpu:$MYMASK ./set_gpu_device_multirank.sh ./hello_jobstep

<snip>

MPI 001 - OMP 000 - HWT 052 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 001 - HWT 053 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 001 - OMP 002 - HWT 054 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 003 - OMP 000 - HWT 060 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 002 - HWT 062 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 003 - OMP 001 - HWT 061 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 000 - HWT 057 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 001 - HWT 058 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 002 - OMP 002 - HWT 059 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 1 - Bus_ID c6
MPI 000 - OMP 000 - HWT 049 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 001 - HWT 050 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1
MPI 000 - OMP 002 - HWT 051 - Node nid007415 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID c1

Courtesy: Marcus Wagner, HPE

With NPS4, we want to get the full CPU socket bandwidth. We need to have 

processes/threads on each core in each NUMA domain.

In addition, we oversubscribe the GCD with 2 ranks to better utilize its resources.

Ranks 0 and 1 got GCD 0, 

Ranks 2 and 3 got GCD 1

Threads are closely packed according to specified mask
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Summary

• In parallel applications, Affinity involves Placement, Order and Binding

• Affinity is important for hybrid applications on the complex architectures of today

• Higher memory bandwidth

• Lower latency

• Optimize communication

• Avoid excessive thread/process migration

• Affinity can be achieved in many ways

• Need to know the architecture

• Need to know the performance limiters of the application and design the best strategy to use resources

• Need to know the communication pattern between processes

• Need to know how to control placement using a combination of MPI, OpenMP®, Pthread, Slurm options
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