
Introduction to GPU programming

Dr. Ezhilmathi Krishnasamy
Parallel Computing and Optimization Group (PCOG), University of Luxembourg (UL), Luxembourg

What we are going to discuss

I GPU and CPU architecture overview and comparison
• streaming multiprocessors, memory hierarchy, threads blocks, etc,.

I CUDA programming model
• programming structure, thread hierarchy, device call, etc,.

I Memory management
• unified memory, explicit memory copy, etc,.

I Examples in numerical linear algebra
• vector multiplication, vector addition, etc,.

I A quick demo session with some examples

1 / 25

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.intel.com/content/www/us/en/products/sku/228795/intel-core-i712650hx-processor-24m-cache-up-to-4-70-ghz/specifications.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#memory-hierarchy
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.netlib.org/blas/

Motivation: Why we need supercomputers

I Powerful computers will help to unlock the secrets in science and
engineering

I Astrophysics

I CFD:turbulence

I Bioinformatics

I Material science

2 / 25

https://www.exascaleproject.org/research/
https://www.exascaleproject.org/research/
https://www.ornl.gov/project/towards-exascale-astrophysics-mergers-and-supernovae-teams
https://www.nas.nasa.gov/assets/pdf/ams/2019/AMS_20190912_Spalart_part2.pdf
https://www.exascaleproject.org/publication/adept-introduced-to-improve-large-scale-bioinformatics-data-analysis/
https://www.exascaleproject.org/research-group/chemistry-and-materials/

Motivation: Why we need supercomputers

I We need to do lots of arithmetic computation in
science & engineering and artificial intelligence

I For example, in science and engineering, problems
are defined by partial differential equations (PDEs)

I PDEs are converted into a system of equations by
using numerical methods (e.g., finite difference and
finite element methods), where we need to find the
values for the unknown variables

I Similarly, in artificial intelligence, we end up solving
matrices and vectors

3 / 25

Important differences between CPU and GPU

I GPU has many cores compared to CPU

I But on the other hand, the CPU’s frequency is higher

than the GPU. That makes the CPU faster in

computing compared to GPU
• Intel R© CoreTM i7-10700K Processor base frequency is 3.80 GHz,

whereas, Nvidia Ampere has 0.765 GHz

I However, GPU can handle many threads in parallel,
which can process many data in parallel

I In the GPU, cores are grouped into GPU Processing
Clusters (GPCs), and each GPCs has its own Streaming
Multiprocessors (SMs) and Texture Processor Clusters
(TPCs)

I Nvidia (microarchitecture): Tesla (2006), Fermi (2010),
Kepler (2012), Maxwell (2014), Pascal (2016), Volta
(2017), Turing (2018), and Ampere (2020)

I Video Link: Mythbusters Demo GPU versus CPU

Source:Nvidia: CUDA programming

4 / 25

https://ark.intel.com/content/www/us/en/ark/products/199335/intel-core-i710700k-processor-16m-cache-up-to-5-10-ghz.html
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.youtube.com/watch?v=-P28LKWTzrI
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Serial programming vs. parallel programming

I Serial programming:
• An entire problem can be divided in to discrete series of instructions
• All the instructions are executed one by one
• Executed by single thread or processor
• Only one instruction can be executed at the same time

I Parallel programming
• An entire problem can be divided into discrete parts such way that it can be

solved concurrently
• Each part may have set of instructions
• Each parts instructions are executed on different thread/processor
• Since it is a parallel execution, a target problem needs to be

controlled/coordinated

I CPU, GPU, and other parallel processor can perform the parallel computing

5 / 25

Serial programming vs. parallel programming

Serial computing generic example

Serial computing example of processing payroll

Parallel computing generic example

Parallel computing example of processing payroll

Source:HPC LLNL

6 / 25

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

GPU architecture

I Computer architecture is characterized by 4

according to Flynn’s taxonomy
• Single instruction stream, single data stream

(SISD)
• Single instruction stream, multiple data

streams (SIMD)
• Multiple instruction streams, single data

stream (MISD)
• Multiple instruction streams, multiple data

streams (MIMD)

I GPUs are based on Single Instruction Multiple
Threads (SIMT)

Source:Daniel E. 45 year CPU evolution

7 / 25

https://www.researchgate.net/publication/323510528_45-year_CPU_evolution_one_law_and_two_equations

GPU architecture

I Ampere GPU had seven GPCs, 42 TPCs, and
84 SMs.

I Volta GPU has six GPCs, each GPC has a
seven TPCs (each including two SMs), and 14
SMs.

I Each SMs has L1 cache (up to 128 KB) and
L2 (up to 6144 KB) cache is shared between
the GPCs.

I RT (Ray Tracing) cores dedicated to do the
ray-tracing rendering math computation.

I Tensor Cores: provides the speedups for AI
neural network training computation.

I Programmable Shading Cores, which has a
CUDA cores.

Source:Nvidia: deep learning

8 / 25

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch

GPU architecture

I SIMT enables programmers to achieve
thread-level parallelism in streaming
multiprocessors (SMs)

I The multiprocessor occupancy is the ratio of
active warps to the maximum number of warps
supported on the GPU’s multiprocessor

I SMs in the GPU are based on the scalable
array multi-thread, which allows grid and
thread blocks of 1D, 2D, and 3D data

I Programmers can write the grid and block size
to create a thread when executing the device
kernel; this thread block is typically called a
cooperative thread array (CTA)

I A parallel execution is happening in the SMs
via warps and one warp contains 32 threads

Source:Nvidia: Parallel Thread Execution

9 / 25

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Usage of compute capabilities in different Nvidia GPU
architecture

Compute capability (flag) Architecture support

sm 35, and sm 37

Basic features
+ Kepler support
+ Unified memory programming
+ Dynamic parallelism support

sm 50, sm 52 and sm 53 + Maxwell support
sm 60, sm 61, and sm 62 + Pascal support
sm 70 and sm 72 + Volta support
sm 75 + Turing support
sm 80, sm 86 and sm 87 + NVIDIA Ampere GPU architecture support

10 / 25

Thread organization

I Threads are organized within a Grids and
Blocks. These Grids and Blocks can be in 1D,
2D or 3D. And these are declared as dim3

I Example: 2D grid and thread block

I Example: 1D grid and thread block

I Example: calling thread block in the main
program

Source:Nvidia: CUDA programming

11 / 25

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Thread organization

I Dimension variables:
• gridDim specifies the number of blocks in the grid
• blockDim specifies the number of threads in each block

I Index variables:
• blockIdx gives the index of the block in the grid
• threadIdx gives the index of the thread within the block

12 / 25

CUDA API

I cudaMalloc() allocates device memory

I cudaMemcpy() transfers data to or from a device

I cudaFree() frees device memory that is no longer in use

I syncthreads() synchronizes threads within a block

I cudaDeviceSynchronize() effectively synchronizes all threads in a grid

I cudaMallocManaged() for allocating unified memory

13 / 25

Major comparison between Turing vs. Ampere

Graphics Card GeForce RTX 2080 Founders Edition GeForce RTX 3080 10GB Founders Edition

GPU Codename TU104 GA102

GPU Architecture Nvidia Turing Nvidia Ampere
GPCs 6 6

TPCs 23 34

SMs 46 68

CUDA Cores / SM 64 128

CUDA Cores / GPU 2944 8704

Tensor Cores / SM 8 (2nd Gen) 4 (3rd Gen)

Tensor Cores / GPU 368 272 (3rd Gen)

RT cores 46 (1st Gen) 68 (2nd Gen)

Source:Nvidia Ampere

14 / 25

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

Compute capabilities for latest Nvidia GPUs

Data Center GPU Nvidia V100 Nvidia A100 Nvidia H100
GPU architecture Nvidia Volta Nvidia Ampere Nvidia Hopper

Compute Capability 7 8 9

Thread / Warp 32 32 32

Max Warps / SM 64 64 64

Max Threads / SM 2048 2048 2048

Max Thread Blocks (CTAs) / SM 32 32 32

Max Threads Blocks / Thread Block Clusters NA NA NA

Max 32-bit Registers / SM 65536 65536 65536

Max Registers / Thread Block 65536 65536 65536

Max Registers / Thread 255 255 255

Max Thread Block Size (#of threads) 1024 1024 1024

FP32 Cores / SM 64 64 64

Ratio of SM Registers to FP32 Cores 1024 1024 1024

Shared Memory Size / SM
Configurable
up to 96 KB

Configurable
up to 164 KB

Configurable
up to 228 KB

Source:Nvidia H100

15 / 25

https://resources.nvidia.com/en-us-tensor-core

CUDA function qualifiers and variable memory space specifiers

Qualifier Description

device
These functions are executed only
from the device and callable only from device

global
These functions are executed from the device,
and it can be callable from the host and
device (only for compute capabilities 3.2 or higher)

host
These functions are executed from a host,
and callable only from the host

noninline
forceinline

Compiler directives instruct the functions
to be inline or not inline

Variable Memory Scope Lifetime
device Global Grid (entire grid of thread blocks) Application

constant Constant Grid (entire grid of thread blocks) Application

shared Shared Block (within a thread block) Block

16 / 25

Hello world

I Run a part or entire application on the GPU
I Call cuda function on device
I It should be called using function qualifier

global

I Calling the device function on the main

program:
• C/C++ example, c function()
• CUDA example, cuda function≪1,1≫() (just using 1

thread)

I ≪ ≫, specify the threads blocks within the
bracket

I Make sure to synchronize the threads
• syncthreads(); synchronizes all the threads within a thread

block
• CudaDeviceSynchronize(); synchronizes a kernel call in host

I Most of the CUDA API are synchronized call
by default (but sometimes it is good to call
explicit synchronized call to avoid error in the
computation)

17 / 25

Vector addition

I Memory allocation on both CPU and GPU

I Fill values for host vectors a and b

18 / 25

Vector addition

I Transfer initialized value from CPU to GPU

I Creating a 2D thread block

I Calling the kernel function

I Copy back computed value from GPU to CPU

19 / 25

Vector addition
I Vector addition function call

I Release the host and device memory

I Source:Vector-Addition.cu

20 / 25

https://github.com/ezhilmathik/Castiel-Training/blob/main/Castiel/Vector-Addition.cu

Matrix multiplication

Matrix multiplication function in C/C++ Matrix multiplication function in CUDA

Source:Matrix-Multiplication.cu

21 / 25

https://github.com/ezhilmathik/Castiel-Training/blob/main/Castiel/Matrix-Multiplication.cu

Matrix multiplication

I Allocating the CPU and GPU memory for A,B,
and C matrix

I Transfer initialized A and B matrix from CPU
to GPU

I 2D thread block for indexing x and y

22 / 25

Unified Memory

Without unified memory
I Allocate the host memory

I Allocate the device memory

I Initialize the host value

I Transfer the host value to device memory location

I Do the computation using the CUDA kernel

I Transfer the data from the device to host

I Free device memory

I Free host memory

With unified memory

I Allocate the host memory
I Allocate the device memory

I Initialize the host value

I Transfer the host value to device memory location

I Do the computation using the CUDA kernel

I Transfer the data from the device to host

I Free device memory

I Free host memory

Without unified memory concept With unified memory concept

GPUCPU GPUCPU

Source:Vector-Addition-Unified.cu

23 / 25

https://github.com/ezhilmathik/Castiel-Training/blob/main/Castiel/Vector-Addition-Unified.cu

Unified Memory

Use cudaMallocManaged()

Do not forget to call cudaDeviceSynchronize() after a kernel call

24 / 25

Thank you

If you any question or research collaboration, please contact
ezhilmathi.krishnasamy@uni.lu

If you interested to learn more about CUDA and OpenACC programming, please
refer to PRACE MOOC: GPU Programming for Scientific Computing and
Beyond (given by Prof. Pacal Bouvry and Dr. Ezhilmathi Krishnasamy)

25 / 25

https://www.futurelearn.com/courses/gpu-programming-scientific-computing
https://www.futurelearn.com/courses/gpu-programming-scientific-computing

Dr. Özcan DÜLGER
Computer Engineering, Middle East Technical University

Computer Engineering, Artvin Coruh University

23 May 2022

Workshop - Programming on Accelerators

Performance Optimization and Efficiency

• Memory Coalesced Access to Global Memory

• Device Occupancy and SM Efficiency

• Warp Divergence

Ozcan Dulger, NCC Turkey

Contents:

23.05.2022 Workshop - Programming on Accelerators 2

Performance Optimization and Efficiency

Ozcan Dulger, NCC Turkey

Tesla K40 Board

23.05.2022 Workshop - Programming on Accelerators 3

Performance Optimization and Efficiency

• Reading from or writing to global memory performs segment by segment

• The threads in a warp are physically related to each other. That means a warp
completes its instruction when all the threads in the warp complete the instruction

• In global memory operations, if the threads in the warp access to the different
segments of the global memory, the operations become serial

Ozcan Dulger, NCC Turkey

Memory Coalesced Access:

23.05.2022 Workshop - Programming on Accelerators 4

Performance Optimization and Efficiency

Ozcan Dulger, NCC Turkey

Non-Coalesced Access

23.05.2022 Workshop - Programming on Accelerators 5

warp1 warp2 Last warp

………………………………………………

………………………………………………

segment1 segment2 Last segment

Global Memory

Performance Optimization and Efficiency

Ozcan Dulger, NCC Turkey

Memory Coalesced Access

23.05.2022 Workshop - Programming on Accelerators 6

warp1 warp2 Last warp

…………………………………………………

…………………………………………………

segment1 segment2

Global Memory

23.05.2022 Workshop - Programming on Accelerators 7

Example of Memory Coalesced Access

Load in one transaction

Load in at most 32 transactions

XORWOW Generators

Load the state of the generator of each thread from global
memory as a coalesced way

Note: We use cudaEventRecord in order to
measure the kernel execution times

23.05.2022 Workshop - Programming on Accelerators 8

c

Metrics:
gld_transactions: Number of global memory load transactions
gld_transactions_per_request: Average number of global memory load transactions
performed for each global memory load

23.05.2022 Workshop - Programming on Accelerators 9

Performance Optimization and Efficiency

23.05.2022 Workshop - Programming on Accelerators 10

Ozcan Dulger, NCC Turkey

Grouping

………………………………………………

Global Memory

segment1 segment2

Group 1 Group N Last Group

• A group consists of contiguous segments
• The number of segments in a group can be

• between 1 and data_size/32 (32 is the number of data in a segment)

Ref: Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of Metropolis Resampling on
Graphics Processing Unit. J Sign Process Syst 90, 433–447 (2018)

23.05.2022 Workshop - Programming on Accelerators 11

Grouping

warp1 warp2 Last warp

………………………………………………

Global Memory

segment1 segment2 Last segment

Group 1 Group N Last Group

…………………………………………………

23.05.2022 Workshop - Programming on Accelerators 12

• The number of segments is 16 in a group
• So the memory operations of a warp will perform at most 16

transactions

23.05.2022 Workshop - Programming on Accelerators 13

23.05.2022 Workshop - Programming on Accelerators 14

Performance Optimization and Efficiency

• is the ratio of active warps to the maximum number of resident warps supported on a
multiprocessor

• is related with resource limitations of the SMX. These limitations are:

• Maximum number of threads per multiprocessor (2048)

• Maximum number of threads per block (1024)

• Maximum number of blocks per multiprocessor (16)

• Shared memory and registers

• --ptxas-options=-v gives us the shared memory and register usage

• The main target is to find the optimum number of threads in a block in order to achieve maximum
occupancy

23.05.2022 Workshop - Programming on Accelerators 15

Ozcan Dulger, NCC Turkey

Occupancy

Performance Optimization and Efficiency

23.05.2022 Workshop - Programming on Accelerators 16

Ozcan Dulger, NCC Turkey

• Set the block size as 64:

• At most 16x64 (1024) threads can be active in a SMX

• %50 theoretical occupancy

• Set the block size as 128:

• At most 16x128 (2048) threads can be active in a SMX

• %100 theoretical occupancy

• Set the block size as 1024:

• At most 2x1024 (2048) threads can be active in a SMX

• %100 theoretical occupancy

Occupancy

23.05.2022 17

In scenario 1, we set the number of threads to data_size until
data_size becomes 2048

In scenario 2, we set the number of threads to 32 until data_size
becomes 1024. Then we double the number of threads until data_size
becomes 32768

• We set the number of iterations as 1000000 so that ‘if-elseif’
structure dominates the execution time

• No warp divergence is occurred
• We use cudaEventRecord in order to measure the kernel execution

times

Performance Optimization and Efficiency

23.05.2022 Workshop - Programming on Accelerators 18

Ozcan Dulger, NCC Turkey

Occupancy

data_size

Scenario 1 Scenario 2

of threads # of blocks T. Occup. # of threads # of blocks T. Occup.

32 32 1 %25 32 1 %25

64 64 1 %50 32 2 %25

128 128 1 %100 32 4 %25

256 256 1 %100 32 8 %25

512 512 1 %100 32 16 %25

1024 1024 1 %100 64 16 %50

2048 1024 2 %100 128 16 %100

4096 1024 4 %100 256 16 %100

8192 1024 8 %100 512 16 %100

16384 1024 16 %100 1024 16 %100

32768 1024 32 %100 1024 32 %100

65536 1024 64 %100 1024 64 %100

• In the first scenario, we try to increase the theoretical occupancy

• In the second scenario, we try to distribute the blocks to the SMs evenly in order to utilize the SMs efficiently

Performance Optimization and Efficiency

• sm_efficiency metric: The percentage of time at least one warp is active on a
multiprocessor averaged over all multiprocessors on the GPU

• First, the ratios of the running time of each SM to the total running time of the GPU is
calculated. Then, the average of these ratios is the result of the metric

• achieved_occupancy metric: The ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

• achieved_occupancy can not exceed the theoretical occupancy

23.05.2022 Workshop - Programming on Accelerators 19

Ozcan Dulger, NCC Turkey

SM Efficiency

23.05.2022 Workshop - Programming on Accelerators 20

Data

Size

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

of threads # of blocks SM Efficiency T. Occup. Achieved Occ. Exec. Time

32 32 32 1 1 6.54% 6.55% 25% 25% 1.5% 1.5% 0.35 0.35

64 64 32 1 2 6.54% 12.46% 50% 25% 2.9% 1.5% 0.41 0.41

128 128 32 1 4 6.54% 18.83% 100% 25% 4.3% 1.5% 0.69 0.69

256 256 32 1 8 6.54% 37.17% 100% 25% 8.8% 1.5% 0.70 0.69

512 512 32 1 16 6.54% 68.48% 100% 25% 17% 1.6% 0.71 0.69

1024 1024 64 1 16 6.54% 78.32% 100% 50% 35% 2.8% 0.74 0.70

2048 1024 128 2 16 13.15% 96.32% 100% 100% 35% 4.7% 0.75 0.70

4096 1024 256 4 16 26.26% 95.91% 100% 100% 35% 9.4% 0.75 0.72

8192 1024 512 8 16 52.41% 95.10% 100% 100% 35% 18% 0.75 0.74

16384 1024 1024 16 16 83.29% 83.28% 100% 100% 39% 39% 0.91 0.91

32768 1024 1024 32 32 62.07% 62.11% 100% 100% 72% 72% 1.6 1.6

65536 1024 1024 64 64 72.80% 72.80% 100% 100% 77% 75% 2.49 2.49

• Values with green background mean the scenario is better than the other scenario for the corresponding metric

• Values with yellow background mean both scenarios have the same values of parameters. Hence the values of the
outputs are almost same

• Having better theoretical and achieved occupancy does not always mean better execution time performance

• In this example, SM efficiency is more effective on the execution time of the kernel

• Although S1 has better occupancy, the execution times of S2 are better than those in S1 in some of the cases

Performance Optimization and Efficiency

1.Unbalanced workload within blocks
• the warps in a block have unbalanced workload

2.Unbalanced workload across blocks
• the blocks in a grid have unbalanced workload

3.Too few blocks launched
• running few blocks in an SM than the maximum active blocks per SM

4.Partial last wave
• maximum number of warps that can be active at once in an SM

• https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cud
aexperiments/kernellevel/achievedoccupancy.htm

23.05.2022 Workshop - Programming on Accelerators 21

Ozcan Dulger, NCC Turkey

Causes of Low Achieved Occupancy

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

Performance Optimization and Efficiency

• Some of the structures such as ‘If-Else’ structure are considered as a single instruction for a warp

• A warp completes ‘If-Else’ instruction when all the threads in the warp complete ‘If-Else’ instruction

• If the threads in a warp execute the different paths of ‘If-Else’ structure, executing these paths
becomes serial

• if(tid %2 == 0)//tid is global thread id

…………..

else

…………..

• First the threads with even thread id in a warp execute ‘if’ path, and the remaining threads wait

• Then the threads with odd thread id in a warp execute the ‘else’ path, and the remaining threads
wait

23.05.2022 Workshop - Programming on Accelerators 22

Ozcan Dulger, NCC Turkey

Warp Divergence

Performance Optimization and Efficiency

• It is important that all the threads in a warp execute the same path of ‘if-Else’ structure

• This can be ensured by using warp id in the condition of the structure

• if((tid/32) %2 == 0)//tid is the global thread id

…………..

else

…………..

• The threads whose warp id is even execute the ‘if’ path

• The threads whose warp id is odd execute the ‘else’ path

• So executing the paths does not become serial

23.05.2022 Workshop - Programming on Accelerators 23

Ozcan Dulger, NCC Turkey

Warp Divergence

23.05.2022 Workshop - Programming on Accelerators 24

27 April
2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

• Sufficiently number of paths (4)
• Sufficiently number of repetitions of the instruction (100)
• Memory operations are coalesced, so the divergence dominates

the execution time
• We use cudaEventRecord in order to measure the kernel

execution times

• Distribute the paths according to warp id
• First warp executes addition, second warp executes

subtraction and so on

• Distribute the paths according to global thread id
• First thread executes addition, second thread executes

subtraction and so on

23.05.2022 Workshop - Programming on Accelerators 25

Metric:
warp_execution_efficiency: Ratio of the average active threads per warp to the maximum number
of threads per warp supported on a multiprocessor expressed as percentage

Performance Optimization and Efficiency

• https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-
literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

• https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf

• https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html

• https://docs.nvidia.com/cuda/profiler-users-guide

• Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of Metropolis
Resampling on Graphics Processing Unit. J Sign Process Syst 90, 433–447 (2018)
https://rdcu.be/cLz8N

• https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

• https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexpe
riments/kernellevel/achievedoccupancy.htm

23.05.2022 Workshop - Programming on Accelerators 26

Ozcan Dulger, NCC Turkey

References

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/profiler-users-guide
https://rdcu.be/cLz8N
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

Co-funded by the Horizon 2020 programme

of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement
No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany,
Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia,
Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway,
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!

23.05.2022 Workshop - Programming on Accelerators 27

Multi-GPU and multi-stream
programming
Programming on Accelerators

EuroCC / Castiel WP2 workshop
May 23th, 2022

Luca Ferraro (l.ferraro@cineca.it)

HPC Department - CINECA

EuroCC Italy

 Brief Recup of GPGPU Programming Model

 Synchronous and Asynchronous Operations

 Streams

 Concurrent Execution

 Managing multi-devices

 inter GPU communications

GPGPU Programming Model

CPU GPU

• Optimized for low-latency
accesses to cached data sets

• Control logic for out-of-order
and speculative execution

• Best for serial or event driven
tasks

• Optimized for data-parallel,
throughput computation

• can handle thousands of
threads efficiently

• Best for data-parallel tasks

GPGPU Programming Model

3

 General Purpose GPU Programming relates to use of GPU computational power to
solve problems other than graphics

 CPU and GPU are separate devices with separate memory space addresses

 GPU is seen as an auxilirary coprocessor equiped with thousands of cores and a
high bandwidth memory

 They should work togheter for best benefit and performances

CPU GPU

GPGPU Programming Model

4

 serial parts of a program, or those with low level of parallelism,
keep running on the CPU (host)

 computational-intensive data-parallel regions are executed
on the GPU (device)

 required data is moved on GPU memory and back to HOST memory

Data movement

5

HOST RAM EXECUTE

MULTIPLE

THREADS

. . .

GPU RAM

 data must be moved from HOST to DEVICE memory in order to be processed on
the GPU

 when data is processed, and no more needed on the GPU,
it is transferred back to HOST

The data movement bottleneck

6

 Data movement is often the bottleneck of many GPU porting activities or
applications

• many unexperienced GPU developer don't keep the data transfer problem
seriously enough or simply ignore it

 some GPU paradigms/solution "hides" or automate transfers, but the driver or the compiler
could make wrong choices

• the bus transfer can be quite slow with respect to the GPU throughput capacity
 PCIe v3 provides 12-14GB/s average transfer rate

• sometimes data transfer can take more than the GPU computation if the problem
is too "easy"

 that's way we stressed that GPU are best suited for
computational intensive problems, not just "parallel"

 for example:
o a vector add is not suited for GPU (order N)
o matrix matrix multiplication is a good candidate for GPU (order N3)

7

 Synchronous and Asynchronous Operations

Blocking and Non-blocking Functions

 blocking (synchronous):
returns control to host thread after
execution is completed on device

• all memory transfer > 64KB

• all memory allocation on device

• allocation of page locked memory on host

 CUDA runtime functions can be divided in two categories:

 Non-blocking (asynchronous):
returns control to host immediatelly, while
its execution proceeds on device

• all kernel launches are asynchronous

• all memory transfers < 64KB

• memory initialization on device (cudaMemset)

• memory copies from device to device

• explicit asynchronous memory transfers

 CUDA API provides asynchronous versions of their counterpart synchronous
functions

Concurrent and Asynchronous Execution
Asynchronous functions allow to
perform concurrent execution:

1. Overlap computation on host and
on device

2. execution of more than on kernel
on the same device

3. data transfers between host and
device while executing a kernel

4. data transfers from host to
device, while transfering data
from device to host

9

Example of Devie/Host Concurrent Execution

kernel <<<threads, Blocks>>> (a, b, c) // asynchronous / non-blocking call

// execute some work on CPU while GPU keeps on computing

CPU_Function()

// blocks CPU until GPU has finished its work

cudaDeviceSynchronize()

// CPU can use data resulting from the GPU computation

CPU_uses_the_GPU_kernel_results()

Since CUDA kernel invocation is an asynchronous operation, CPU can proceed and
evalutate the CPU_Function() while the GPU is involved in kernel execution
(concurrent execution).

Before using the results from you CUDA kernel, some form of synchronization between
host and device is required.

11

 Streams

CUDA Streams

12

 GPU operations are implementated in CUDA using execution
queues, called streams

 any operation pushed in a stream will be executed only after
all other operations in the same stream are completed
• FIFO queue behaviour

 operations assigned to different streams can be executed in
any order with respect to each other

 The CUDA runtime provides a default stream (stream 0) which
will be the default queue of all operation if not explicitly
declared otherwise

CUDA Streams

13

 All operations assigned to the default stream will be executed only after all preceeding operations already
assigned to other streams are completed

 Any further operation assigned to other stream different from the default will begin only after all operations
on the default stream are completed

 operations assigned to the default stream act as implicit synchronization barriers among other streams

 remeber: operations assigned to different streams can be executed with any precedence with respect other
streams

STREAM 0 STREAM 1 STREAM 2

Command 1
Command 1
Command 2
Command 1
Command 2
Command 3
Command 2

host command sequence

Command 1

Command 1
Command 2

Command 1
Command 2
Command 3

Command 2

device stream execution

STREAM 0 STREAM 1 STREAM 2

Command 1
Command 1
Command 1
Command 2
Command 2
Command 2
Command 3

host command sequence

device stream execution

Command 1

Command 1 Command 1

Command 2

Command 2
Command 2

Command 3

Kernel Concurrent Execution
cudaStream_t stream1, stream2;

cudaStreamCreate(stream1);

cudaStreamCreate(stream2);

// concurrent launch of the same kernel on different data

Kernel_1<<<blocks, threads, shmem_size, stream1>>>(inp_1, out_1);

Kernel_1<<<blocks, threads, shmem_size, stream2>>>(inp_2, out_2);

// concurrent launch of different kernels

Kernel_1<<<blocks, threads, shmem_size, stream1>>>(inp, out_1);

Kernel_2<<<blocks, threads, shmem_size, stream2>>>(inp, out_2);

some_other_host_operation();

cudaStreamDestroy(stream1);

cudaStreamDestroy(stream2);

potentially

overlapped !
overlapped

also with host !

STREAM 1

STREAM 2

HOST

Kernel_1 Kernel_2

Kernel_1 Kernel_1

some_other_host_operationK1 K1 K1 K2

potentially

overlapped !

Synchronization

15

 Explicit Synchronizations :
• cudaDeviceSynchronize()

 Blocks host code until all operations on the device are completed

• cudaStreamSynchronize(stream)

 Blocks host code until all operations on a stream are completed

• cudaStreamWaitEvent(stream, event)

 Blocks all operations assigned to a stream until event is reached

 Implicit Synchronizations :
• All operations assigned to the default stream
• All page-locked memory allocations
• All memory allocations on device
• All settings operation on device
• …

16

 Asynchronous Data Transfers

Asynchronous Data Transfers

17

 host memory must be of page-locked type (a.k.a pinned) in order to perform
asynchronous data transfers between host and device

 CUDA runtime provides the following functions to handle page-locked memory:
• cudaMallocHost()allocate page-locked memory on host
• cudaFreeHost()free page-locked allocated memory
• cudaHostRegister()turn host allocated memory into page-locked
• cudaHostUnregister()turn page-locked memory into ordinary memory

 the cudaMemcpyAsync()function explicitly performs asynchronous data
transfers between host and device memory

 data transfer operations should be queued into a stream different from the
default one in order to be asynchronous

 Using page-locked memory allows data transfers between host and device
memory with higher bandwidth performances

Asynchronous Data Transfers

// pseudo-code to illustrate CUDA asynchronous data transfers

cudaStreamCreate(stream_a)

cudaStreamCreate(stream_b)

cudaMallocHost(h_buffer_a, buffer_a_size)

cudaMallocHost(h_buffer_b, buffer_b_size)

cudaMalloc(d_buffer_a, buffer_a_size)

cudaMalloc(d_buffer_b, buffer_b_size)

// asynchronous and concurrent data transfers H2D and D2H

cudaMemcpyAsync(d_buffer_a, h_buffer_a, buffer_a_size, cudaMemcpyHostToDevice, stream_a)

cudaMemcpyAsync(h_buffer_b, d_buffer_b, buffer_b_size, cudaMemcpyDeviceToHost, stream_b)

cudaStreamDestroy(stream_a)

cudaStreamDestroy(stream_b)

cudaFreeHost(h_buffer_a)

cudaFreeHost(h_buffer_b)

Using Streams for Pipelining (Chunking)

kernel<<<>>>cudaMemcpy(H2D) cudaMemcpy(D2H)

K1H2D H2D H2D H2D D2H D2H D2H D2HK3 K4K2

H2D K1 D2H H2D K2 D2H H2D K3 D2H H2D K4 D2H

H2D K1 D2H

H2D K2

H2D

D2H

K3

H2D

D2H

K4 D2H

imagine you have a set of data you have to transform with a kernel:

• copy data to device, launch kernel, copy results bacj to host

since we are dealing with parallel transformations we can split our data into chunks:

• final result is independent on the order in which trasnformation is applied to data

now, let's arrange chunks into a set smaller package of computation, each on a different chunk:

we can distribute these packages on different streams and perfom pipelined transformation:

saved computation time

Asynchronous Data Transfers
cudaStream_t stream[4];

for (int i=0; i<4; ++i) cudaStreamCreate(&stream[i]);

float* hPtr; cudaMallocHost((void**)&hPtr, 4 * size);

for (int i=0; i<4; ++i) {

cudaMemcpyAsync(d_inp + i*size, hPtr + i*size,

size, cudaMemcpyHostToDevice, stream[i]);

MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

cudaMemcpyAsync(hPtr + i*size, d_out + i*size,

size, cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize();

for (int i=0; i<4; ++i) cudaStreamDestroy(&stream[i]);

Concurrency

21

 Concurrency: when two or more CUDA operations proceed at the same time

• from Kepler and higher nvidia GPU models: up to 32 way concurrency

• 2 data transfers host/device (duplex)

• concurrency with host operations

Serial :

2 way concurrency :

3 way concurrency :

4 way concurrency :

4/+ way concurrency :

22

 Multiple GPU

Device Management

cudaDeviceCount(&number_of_gpus);

for (int gpuid = 0; gpuid < number_of_gpus; gpuid++) {

cudaSetDevice(gpuid);

kernel <<<threads, Blocks>>> (a, b, c);

// kernel launch is not blocking, so no need to use non-default streams here

}

for (int gpuid = 0; gpuid < number_of_gpus; gpuid++) {

cudaSetDevice(gpuid);

cudaDeviceSynchronize();

}

CUDA runtime allows to control all GPU device available on a computing node:

 get information on available CUDA enabled devices

 get specifications of each device (capability, memory sizes, SM units, etc)

 select a device and enqueue CUDA operations on that device

 manage synchronization among streams running on available devices

Device Chunking

cudaGetDeviceCount(&number_of_gpus);

float *data_gpu[number_of_gpus]; // use different buffers on each GPU

size_t lower[number_of_gpus], upper[number_of_gpus], width[number_of_gpus];

cudaStream_t gpu_streams[number_of_gpus]; // create non default streams on each GPU

for (int gpuid = 0; gpuid < number_of_gpus; gpuid++) {

cudaSetDevice(gpuid); cudaStreamCreate(&gpu_streams[gpuid]);

lower[gpuid] = chunk_size * gpuid;

upper[gpuid] = min(lower[gpuid] + chunk_size, num_entries); // handle reminder

width[gpuid] = upper[gpuid] - lower[gpuid];

cudaMalloc(&data_gpu[gpu], sizeof(float)* width[gpuid]);

}

Multi-GPU programming can be used to speedup computation by chunking:

 distribute num_entries of data to be processed by a kernel on available GPUs

 handle starting index and reminder properly

 allocate required data for each device ...

Device Chunking

for (int gpuid = 0; gpuid < number_of_gpus; gpuid++) {

cudaSetDevice(gpuid);

cudaMemcpyAsync(data_gpu[gpu], data_cpu + lower[gpuid],

sizeof(float) * width[gpudid], cudaMemcpyHostToDevice, gpu_stream[gpuid]);

kernel <<<grid, block, shmem, gpu_stream[gpuid]>>> (&data_gpu[gpu], width[gpuid]);

cudaMemcpyAsync(data_cpu + lower[gpuid], data_gpu[gpu],

sizeof(float) * width[gpudid], cudaMemcpyDeviceToHost, gpu_stream[gpuid]);

}

 copy host data to local GPU device buffers

 launch required kernel on each device

 copy back data on host buffer

 remember: use asynchronous operations not to block host loop

Device Communication (single-node)
 A device can directly transfer or access data to/from another device

• This kind of direct transfer is called Peer to Peer (P2P)
 P2P transfers are more efficient and do not require buffers on host for

inter-GPU exchanges
• Direct access avoid host memory copy

 P2P should be activated between two GPUs
 P2P communication availability should be queried

• Dual-IOH systems prevent PCIe P2P across the IOH chips
• QPI link between the IOH chips isn’t compatible with PCIe P2P
• if P2P is not available, a fall-back to D2H->H2D is automatically handled

Device Communication (single-node)

// pseudo code to enable P2P communications between gpuA and gpuB

gpuA=0, gpuB=1

cudaSetDevice(gpuA)

cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:

cudaDeviceEnablePeerAccess(gpuB, 0)

// gpuA performs copy from gpuA to gpuB

cudaMemcpyPeer(buffer_B, gpuB, buffer_A, gpuA, buffer_size)

// gpuA performs copy from gpuB to gpuA

cudaMemcpyPeer(buffer_A, gpuA, buffer_B, gpuB, buffer_size)

Device Communication (multi-node)

// common HALO EXCHANGE pattern between GPUs with traditional MPI

cudaMemcpyAsync(..., stream_halo[i]); // D2H transfer

cudaStreamSynchronize(stream_halo[i]); // be sure data is on host buffer

MPI_Sendrecv(...); // perform communication (blocking)

cudaMemcpyAsync(..., stream_halo[i]); // H2D transfer

// repeat this for each halo side

// HALO EXCHANGE pattern with CUDA-aware

MPI_Sendrecv(field_d[left_border], ..., field_d[right_halo], ...) // send left, receive right

MPI_Sendrecv(field_d[right_border], ..., field_d[left_halo], ...) // send right, receive left

CUDA API allows to handle GPUs belonging to a single node only

 if you need to use GPUs belonging to multiple node you have to rely on other multi-precesses
programming paradigms such as MPI, PGAS, etc

 there are CUDA-aware MPI implementations which allow to refer device buffers pointers as
source/destination of communications (RDMA)

 other approaches are available (i.e: nvshmem) but no time to fit in this lecture

Wrapping Up

 we can split GPU computation
into smaller chunks

 use streams and asynchronous
operations to build pipe-line

 using multi-GPU to scale
computation over available
distributed resources

H2D K1 D2H

H2D K2

H2D

D2H

K3

H2D

D2H

K4 D2H

kernel<<<>>>cudaMemcpy(H2D) cudaMemcpy(D2H)

single

GPU

without

streams

single

GPU

with

streams

multi

GPU

with

streams

... and that's all folks !!!

Thank you for your attention
and happy programming!

Co-funded by the Horizon 2020 programme

of the European Union

﻿This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant

agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation

programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary,

Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, France, Netherlands,

Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

 on-line CUDA Programming Guide

 https://developer.nvidia.com/blog

 CUDA Streams - Best Practice and Common Pitfalls
GTC talk by Justin Luitjens - NVIDIA

 Multi-GPU Programming Models
GTC November 2021 by Jiri Kraus - NVIDIA

CINECA organizes courses and schools on many HPC subjects:
have a look at https://eventi.cineca.it/en/hpc for an updated list

For further questions or interest in collaboration,
please send me an email at l.ferraro@cineca.it

References

Rights & Credits

These slides are CINECA 2022 and are released under the
Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Creative
Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Luca Ferraro, Sergio Orlandini

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

