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▪ Designed for the requirements of HPC

▪ Consistent UX with Docker: small learning curve

▪ Transparent native performance through OCI hooks

▪ Enables use of standard, open, upstream components on HPC systems

▪ Extensible architecture encourages vendor engagement and improves 
maintainability
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Sarus container engine
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Typical user workflow at CSCS
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HPC features highlights



Features specific to HPC (1): exposing the PMI-2 interface

▪ MPI libraries (e.g. MPICH) use PMI-2 to communicate between processes
▪ PMI-2 features specific env variables and UNIX sockets (exposed as file 

descriptors) to communicate between processes

▪ Problems:
▪ PMI-2 processes on the same node communicate through a common /dev/shm
▪ runc’s file-descriptor preservation mechanism only works with a contiguous set of FDs
▪ FD numbers within the container are not guaranteed to have the same value as in the host

▪ Sarus implements the following:
▪ Close/duplicate FDs as needed to create a minimal contiguous set
▪ Set PMI-2 env vars in container to use new FD values
▪ Mount /dev/shm from the host system
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Features specific to HPC (2): integrating CUDA environment

▪ The NVIDIA Container Toolkit exposes GPUs based on the variable 
NVIDIA_VISIBLE_DEVICES. This variable is usually set on Dockerfiles to “all”

▪ Problems:
▪ Slurm GRES plugin sets CUDA_VISIBLE_DEVICES
▪ Inside the container the GPU IDs are reset.

E.g., GPUs 1,3 on the host become GPUs 0,1

▪ Sarus implements the following:
▪ Set NVIDIA_VISIBLE_DEVICES to honor the WLM allocation
▪ Set CUDA_VISIBLE_DEVICES inside the container to ensure correct functionality of GPU 

apps, even in case of partial or shuffled device allocations on multi-GPU systems
▪ Compare this with Docker CLI > 19.03
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OCI Hooks



▪ “An open governance structure for creating open industry standards around container formats 
and runtime”

The Open Container Initiative (OCI) Hooks
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▪ “An open governance structure for creating open industry standards around container formats 
and runtime”

▪ The OCI Runtime Specification defines an interface to plug-in, or hook, external programs at 
certain points in the lifecycle of the container. Such programs can customize the container.

The Open Container Initiative (OCI) Hooks
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▪ While the image remains portable and self-sufficient, hooks can act at 
launch-time to create machine-specific, high-performance containers

OCI Hooks: runtime customization of portable images
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▪ By configuring hooks matching the features available on specific machines, 
admins can maintain leaner installations

▪ Containers leverage the advantages of each system as users move through the 
application/research lifecycle

OCI Hooks: tailoring installations to systems features
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OCI Hooks: enabling separations of concerns

Container engine / runtime developers

Sarus,  Podman
runc, crun

...

▪ Do not need to integrate or reverse-engineer 
the specifics of high-performance 
technologies 
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Vendors, technology specialists

▪ Can develop feature-specific extensions 
without having to know how containers are 

created

OCI Hooks interface
(part of the Runtime spec)

Results in sustainable, timely, higher-quality support of specific technologies in containers
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OCI Hooks used at CSCS
▪ NVIDIA Container Toolkit for GPU support
▪ MPI hook (MPICH-based)

▪ Native performance from host MPICH-based libraries
▪ Developed by CSCS, bundled with Sarus

▪ Glibc hook
▪ Replaces container’s glibc if older than host’s glibc
▪ Ensures that mounted host resources (e.g. MPI) work inside the container
▪ Developed by CSCS, bundled with Sarus

▪ SSH hook
▪ Setup ssh connections inside containers
▪ Developed by CSCS, bundled with Sarus

▪ SLURM sync hook
▪ Waits for all processes in a SLURM job to start before executing containerized applications
▪ Developed by CSCS, bundled with Sarus

▪ Timestamp hook
▪ Writes a timestamp. Useful for developers to time/profile hooks.
▪ Developed by CSCS, bundled with Sarus.



MPI Hook

▪ Replace the container MPI with host libraries at runtime, achieving native performance

▪ Relies on MPICH ABI compatibility (https://www.mpich.org/abi/)

▪ Completely transparent to the user:
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sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 ../collective/osu_alltoall

OSU all-to-all latency test
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▪ Open source software by NVIDIA
(https://github.com/nvidia/container-toolkit)

▪ Imports the NVIDIA driver and GPU device files into the container

▪ Native performance, no input required from the user

▪ First example of vendor hook to be successfully tested on Piz Daint
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NVIDIA Container Toolkit

CUDA SDK N-body sample: FP64 GFLOPS

Average Std. deviation

Native 3059.34 5.30

Container 3058.91 6.29
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Hook configuration example: NVIDIA Container Toolkit
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More documentation and examples at https://sarus.readthedocs.io/en/stable/config/configure_hooks.html

https://sarus.readthedocs.io/en/stable/config/configure_hooks.html


Demo: standalone installation



Demo: container customization (MPI/GPU)



Performance tests



GROMACS (Classical Molecular Dynamics)
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Software: GROMACS 2018.3, CUDA 9.1
Test case: PRACE Unified European Applications Benchmark Suite, GROMACS Test Case B
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)
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TensorFlow + Horovod (Deep Learning training)
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Software: TensorFlow 1.7.0, Horovod 0.15.1, CUDA 9.0
Test case: TF CNN Benchmark scripts, ResNet-50, synthetic ImageNet data
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)
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COSMO (Numerical Weather Prediction)
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Software: COSMO 5.0, CUDA 9.1
Test case: Near-global idealized baroclinic wave
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)
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Sarus is a container engine for HPC, compliant with open standards

▪ Combines container portability with native HPC performance

▪ Integrates with HPC infrastructure and software

▪ Customizes containers at runtime with standard plugins

▪ Provides a Docker-like command line interface
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Conclusion
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Further reading

▪ Code on GitHub:
https://github.com/eth-cscs/sarus

▪ Full documentation:
https://sarus.readthedocs.io

▪ Contact:
sarus@cscs.ch

▪ Benedicic, L., Cruz, F.A., Madonna, A. and Mariotti, K., 2019, June. Sarus: Highly Scalable 
Docker Containers for HPC Systems. In International Conference on High Performance 
Computing (pp. 46-60). Springer, Cham.
https://doi.org/10.1007/978-3-030-34356-9_5
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Thank you for your attention.



Backup slides



Sarus: image input

▪ Pull from OCI registry with multiple
download threads

▪ Alternatively, load layers from local
tar file

▪ Extract all layers and convert them
into a single squashfs file

▪ Accompanying metadata file is generated
from image metadata

30

Image 
Manager

CLI

JSON

SARUS

TAR
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OCI Bundle

Sarus: container execution
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Sarus: container rootfs creation
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Sarus: config.json creation

▪ Set container process to have the same uid/gid of host user

▪ Support OCI entrypoint, default arguments, workdir

▪ Create container env variables by uniting host and image environments
(image env vars have precedence)

▪ Disable all Linux capabilities of the container process

▪ Set no_new_privs flag to 1

▪ Enable mount and PID namespace isolation

▪ Set CPU affinity to be the same of the host process (!)
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MPI containers on Piz Daint

▪ Generic images can run unmodified by instructing Slurm to use the PMI-2 
interface:

▪ This way, containers will use the MPI libraries from the image and run at 
sub-optimal performance

▪ Images using MPICH and derivatives: work out of the box

▪ Images using OpenMPI: OpenMPI must be built with PMI-2 support
▪ Configure example on Ubuntu 18.04: 
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srun --mpi=pmi2 sarus run <image> <args>

Deploying high-performance containers with Sarus on Piz Daint

./configure --prefix=/usr --with-pmi=/usr/include/slurm-wlm --with-pmi-libdir=/usr/lib/x86_64-linux-gnu \

 CFLAGS=-I/usr/include/slurm-wlm



MPI containers on Piz Daint

▪ Images using MPICH-based implementations can take advantage of ABI 
compatibility (https://www.mpich.org/abi/)

▪ Sarus can replace the image MPI with host libraries at runtime, achieving the
full performance of the Cray Aries interconnect:

▪ Recommended libraries for compatibility with Piz Daint:
MPICH 3.1.4

MVAPICH2 2.2
Intel MPI Library 2017 Update 1
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srun sarus run --mpi <image> <args>

Deploying high-performance containers with Sarus on Piz Daint

https://www.mpich.org/abi/


GPU containers on Piz Daint

▪ When running on Piz Daint’s GPU nodes, GPU devices are automatically added 
to containers

▪ Fastest way to get CUDA in a Dockerfile: use NVIDIA official images!
https://hub.docker.com/r/nvidia/cuda

▪ NVIDIA images are provided for Ubuntu, Red Hat UBI and CentOS
▪ Other distributions can still install the CUDA Toolkit through package manager or runfile

▪ The NVIDIA driver should NOT be installed in the image (it’s bound to the 
hardware!)
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FROM nvidia/cuda:11.3.0-devel-ubuntu20.04

Deploying high-performance containers with Sarus on Piz Daint

https://hub.docker.com/r/nvidia/cuda

