
Sarus: towards HPC performance for portable containers
EuroCC/CASTIEL webinar
Alberto Madonna, ETH Zurich / CSCS
Theofilos Manitaras, ETH Zurich / CSCS
November 12, 2021

This project has received funding from the European
High-Performance Computing Joint Undertaking (JU)
under grant agreement No 951732. The JU received
support from the European Union’s Horizon 2020
research and innovation.

Table of Contents

1. Sarus overview

2. HPC features highlights

3. OCI Hooks

4. Demos

5. Performance tests

6. Concluding remarks

Sarus: towards HPC performance for portable containers 3

▪ Designed for the requirements of HPC

▪ Consistent UX with Docker: small learning curve

▪ Transparent native performance through OCI hooks

▪ Enables use of standard, open, upstream components on HPC systems

▪ Extensible architecture encourages vendor engagement and improves
maintainability

4

Sarus container engine

Sarus: towards HPC performance for portable containers

Sarus: towards HPC performance for portable containers 5

Typical user workflow at CSCS

SARUS

Architecture overview

Container process

JSON

OCI Runtime
(e.g. runc, crun)

TAR

MPI Hook

GPU Hook

SSH Hook

OCI Hooks

Sarus: towards HPC performance for portable containers 6

HPC features highlights

Features specific to HPC (1): exposing the PMI-2 interface

▪ MPI libraries (e.g. MPICH) use PMI-2 to communicate between processes
▪ PMI-2 features specific env variables and UNIX sockets (exposed as file

descriptors) to communicate between processes

▪ Problems:
▪ PMI-2 processes on the same node communicate through a common /dev/shm
▪ runc’s file-descriptor preservation mechanism only works with a contiguous set of FDs
▪ FD numbers within the container are not guaranteed to have the same value as in the host

▪ Sarus implements the following:
▪ Close/duplicate FDs as needed to create a minimal contiguous set
▪ Set PMI-2 env vars in container to use new FD values
▪ Mount /dev/shm from the host system

8Sarus: towards HPC performance for portable containers

Features specific to HPC (2): integrating CUDA environment

▪ The NVIDIA Container Toolkit exposes GPUs based on the variable
NVIDIA_VISIBLE_DEVICES. This variable is usually set on Dockerfiles to “all”

▪ Problems:
▪ Slurm GRES plugin sets CUDA_VISIBLE_DEVICES
▪ Inside the container the GPU IDs are reset.

E.g., GPUs 1,3 on the host become GPUs 0,1

▪ Sarus implements the following:
▪ Set NVIDIA_VISIBLE_DEVICES to honor the WLM allocation
▪ Set CUDA_VISIBLE_DEVICES inside the container to ensure correct functionality of GPU

apps, even in case of partial or shuffled device allocations on multi-GPU systems
▪ Compare this with Docker CLI > 19.03

9Sarus: towards HPC performance for portable containers

OCI Hooks

▪ “An open governance structure for creating open industry standards around container formats
and runtime”

The Open Container Initiative (OCI) Hooks

11Sarus: towards HPC performance for portable containers

▪ “An open governance structure for creating open industry standards around container formats
and runtime”

▪ The OCI Runtime Specification defines an interface to plug-in, or hook, external programs at
certain points in the lifecycle of the container. Such programs can customize the container.

The Open Container Initiative (OCI) Hooks

12

Create
container

Destroy
containerpre-start post-start post-stop

User application
start stop

Inject host
libraries Send notification Cleanup

Sarus: towards HPC performance for portable containers

▪ While the image remains portable and self-sufficient, hooks can act at
launch-time to create machine-specific, high-performance containers

OCI Hooks: runtime customization of portable images

13

OCI Runtime
(e.g. runc, crun)

MPI Hook GPU Hook

Container
process

MPICH

Container image

GPU devices

GPU driver

Network
devices

Optimized
MPI

Sarus: towards HPC performance for portable containers

▪ By configuring hooks matching the features available on specific machines,
admins can maintain leaner installations

▪ Containers leverage the advantages of each system as users move through the
application/research lifecycle

OCI Hooks: tailoring installations to systems features

Laptop Small cluster Supercomputer

InfiniBand devices
IB-aware MPI

Cray network devices
Cray MPI

GPU devices
GPU driver

MPI Hook MPI Hook GPU Hook
14Sarus: towards HPC performance for portable containers

OCI Hooks: enabling separations of concerns

Container engine / runtime developers

Sarus, Podman
runc, crun

...

▪ Do not need to integrate or reverse-engineer
the specifics of high-performance
technologies

15

Vendors, technology specialists

▪ Can develop feature-specific extensions
without having to know how containers are

created

OCI Hooks interface
(part of the Runtime spec)

Results in sustainable, timely, higher-quality support of specific technologies in containers

Sarus: towards HPC performance for portable containers

Sarus: towards HPC performance for portable containers 16

OCI Hooks used at CSCS
▪ NVIDIA Container Toolkit for GPU support
▪ MPI hook (MPICH-based)

▪ Native performance from host MPICH-based libraries
▪ Developed by CSCS, bundled with Sarus

▪ Glibc hook
▪ Replaces container’s glibc if older than host’s glibc
▪ Ensures that mounted host resources (e.g. MPI) work inside the container
▪ Developed by CSCS, bundled with Sarus

▪ SSH hook
▪ Setup ssh connections inside containers
▪ Developed by CSCS, bundled with Sarus

▪ SLURM sync hook
▪ Waits for all processes in a SLURM job to start before executing containerized applications
▪ Developed by CSCS, bundled with Sarus

▪ Timestamp hook
▪ Writes a timestamp. Useful for developers to time/profile hooks.
▪ Developed by CSCS, bundled with Sarus.

MPI Hook

▪ Replace the container MPI with host libraries at runtime, achieving native performance

▪ Relies on MPICH ABI compatibility (https://www.mpich.org/abi/)

▪ Completely transparent to the user:

17

sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 ../collective/osu_alltoall

OSU all-to-all latency test

Sarus: towards HPC performance for portable containers

https://www.mpich.org/abi/

▪ Open source software by NVIDIA
(https://github.com/nvidia/container-toolkit)

▪ Imports the NVIDIA driver and GPU device files into the container

▪ Native performance, no input required from the user

▪ First example of vendor hook to be successfully tested on Piz Daint

18

NVIDIA Container Toolkit

CUDA SDK N-body sample: FP64 GFLOPS

Average Std. deviation

Native 3059.34 5.30

Container 3058.91 6.29

Sarus: towards HPC performance for portable containers

https://github.com/nvidia/container-toolkit

Hook configuration example: NVIDIA Container Toolkit

19Sarus: towards HPC performance for portable containers

More documentation and examples at https://sarus.readthedocs.io/en/stable/config/configure_hooks.html

https://sarus.readthedocs.io/en/stable/config/configure_hooks.html

Demo: standalone installation

Demo: container customization (MPI/GPU)

Performance tests

GROMACS (Classical Molecular Dynamics)

23

Software: GROMACS 2018.3, CUDA 9.1
Test case: PRACE Unified European Applications Benchmark Suite, GROMACS Test Case B
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)

Sarus: towards HPC performance for portable containers

TensorFlow + Horovod (Deep Learning training)

24

Software: TensorFlow 1.7.0, Horovod 0.15.1, CUDA 9.0
Test case: TF CNN Benchmark scripts, ResNet-50, synthetic ImageNet data
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)

Sarus: towards HPC performance for portable containers

COSMO (Numerical Weather Prediction)

25

Software: COSMO 5.0, CUDA 9.1
Test case: Near-global idealized baroclinic wave
System: Piz Daint hybrid partition (Intel Xeon E5-2690 v3, NVIDIA Tesla P100, Cray Aries Interconnect)

Sarus: towards HPC performance for portable containers

Sarus is a container engine for HPC, compliant with open standards

▪ Combines container portability with native HPC performance

▪ Integrates with HPC infrastructure and software

▪ Customizes containers at runtime with standard plugins

▪ Provides a Docker-like command line interface

26

Conclusion

Sarus: towards HPC performance for portable containers

Further reading

▪ Code on GitHub:
https://github.com/eth-cscs/sarus

▪ Full documentation:
https://sarus.readthedocs.io

▪ Contact:
sarus@cscs.ch

▪ Benedicic, L., Cruz, F.A., Madonna, A. and Mariotti, K., 2019, June. Sarus: Highly Scalable
Docker Containers for HPC Systems. In International Conference on High Performance
Computing (pp. 46-60). Springer, Cham.
https://doi.org/10.1007/978-3-030-34356-9_5

27Sarus: towards HPC performance for portable containers

https://github.com/eth-cscs/sarus
https://sarus.readthedocs.io
mailto:sarus@cscs.ch
https://doi.org/10.1007/978-3-030-34356-9_5

Thank you for your attention.

Backup slides

Sarus: image input

▪ Pull from OCI registry with multiple
download threads

▪ Alternatively, load layers from local
tar file

▪ Extract all layers and convert them
into a single squashfs file

▪ Accompanying metadata file is generated
from image metadata

30

Image
Manager

CLI

JSON

SARUS

TAR

Sarus: highly scalable Docker containers for HPC systems

OCI Bundle

Sarus: container execution

31

CLI

MPI Hook

GPU Hook

Container
process

JSON

OCI Runtime
(e.g. runc, crun)

config.json
• Environment
• Uid/gid
• Workdir
• Select hooks
• Capabilities
• Process args
• Hostname
• Namespaces

RootFS
• Base image
• Writable layer
• Custom

mounts

SSH Hook

SARUS

OCI Hooks

Sarus: highly scalable Docker containers for HPC systems

Sarus: container rootfs creation

32Sarus: highly scalable Docker containers for HPC systems

Sarus: config.json creation

▪ Set container process to have the same uid/gid of host user

▪ Support OCI entrypoint, default arguments, workdir

▪ Create container env variables by uniting host and image environments
(image env vars have precedence)

▪ Disable all Linux capabilities of the container process

▪ Set no_new_privs flag to 1

▪ Enable mount and PID namespace isolation

▪ Set CPU affinity to be the same of the host process (!)

33Sarus: highly scalable Docker containers for HPC systems

MPI containers on Piz Daint

▪ Generic images can run unmodified by instructing Slurm to use the PMI-2
interface:

▪ This way, containers will use the MPI libraries from the image and run at
sub-optimal performance

▪ Images using MPICH and derivatives: work out of the box

▪ Images using OpenMPI: OpenMPI must be built with PMI-2 support
▪ Configure example on Ubuntu 18.04:

34

srun --mpi=pmi2 sarus run <image> <args>

Deploying high-performance containers with Sarus on Piz Daint

./configure --prefix=/usr --with-pmi=/usr/include/slurm-wlm --with-pmi-libdir=/usr/lib/x86_64-linux-gnu \

 CFLAGS=-I/usr/include/slurm-wlm

MPI containers on Piz Daint

▪ Images using MPICH-based implementations can take advantage of ABI
compatibility (https://www.mpich.org/abi/)

▪ Sarus can replace the image MPI with host libraries at runtime, achieving the
full performance of the Cray Aries interconnect:

▪ Recommended libraries for compatibility with Piz Daint:
MPICH 3.1.4

MVAPICH2 2.2
Intel MPI Library 2017 Update 1

35

srun sarus run --mpi <image> <args>

Deploying high-performance containers with Sarus on Piz Daint

https://www.mpich.org/abi/

GPU containers on Piz Daint

▪ When running on Piz Daint’s GPU nodes, GPU devices are automatically added
to containers

▪ Fastest way to get CUDA in a Dockerfile: use NVIDIA official images!
https://hub.docker.com/r/nvidia/cuda

▪ NVIDIA images are provided for Ubuntu, Red Hat UBI and CentOS
▪ Other distributions can still install the CUDA Toolkit through package manager or runfile

▪ The NVIDIA driver should NOT be installed in the image (it’s bound to the
hardware!)

36

FROM nvidia/cuda:11.3.0-devel-ubuntu20.04

Deploying high-performance containers with Sarus on Piz Daint

https://hub.docker.com/r/nvidia/cuda

