
FirecREST: enabling programatic access of HPC resources
EuroCC Webinar

Eirini Koutsaniti, CSCS/ETH Zurich
Juan Dorsch, CSCS/ETH Zurich

12 November 2021



This project has received funding from the European 
High-Performance Computing Joint Undertaking (JU) 
under grant agreement No 951732. The JU received 
support from the European Union’s Horizon 2020 
research and innovation.



FirecREST: a RESTful API to HPC systems

◾ Firecrest in a Nutshell
◾ Requirements of the system
◾ Microservice Architecture
◾ Important components of the system
◾ Deployment at CSCS

FirecREST ∣ 3



Firecrest in a Nutshell



Motivation

◾ Users wanted to develop applications and platforms that take
advantage of the HPC resources.
◾ Need for a standard modern interface to the HPC resources:

– HPC clusters
– Job scheduler
– Filesystem operations
– Internal and external data transfers

◾ Need to integrate with the existing infrastructure

FirecREST ∣ 5



Firecrest in a Nutshell

FirecREST is a RESTful Web API infrastructure.

◾ Provides advanced HPC functionality for
modern web-enabled portals and applications.
It gives access to

– HPC Workload Management
– Data Mover

◾ Enforces integration with Identity Access
Management (IAM) of the HPC center.

FirecREST ∣ 6



Requirements of the system



Requirements of the system

◾ The only Workload Manager that is supported right now is Slurm.

◾ FirecREST relies on a Slurm queue to handle large data transfers
between internal file systems.
◾ FirecREST relies on an Object Storage service for large external data
transfers. Compatible APIs:

– OpenStack Swift
– Amazon Web Services S3

◾ An Identity and Access Management that supports OpenID Connect
(OIDC) protocol

FirecREST ∣ 8



Microservice Architecture



Microservice Architecture

◾ FirecREST is a collection of loosely coupled services.
◾ This architecture provides maintainability, security and stability.

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST

FirecREST ∣ 10



Microservice Architecture

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST

IAM Layer

◾ Each FirecREST request
has to include an OIDC
token in the header.

◾ The first thing a client would
have to do is to aquire a
valid token from the OIDC
server.

FirecREST ∣ 11



Microservice Architecture

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST

Gateway

◾ It should be the only service
that is open to the internet.

◾ It is the responsible
microservice that will
implement and enforce:

– authentication
– authorization
– traffic control
– analytics and logging

of requests

FirecREST ∣ 12



Microservice Architecture

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST

Utilities microservice

◾ Provides filesystem utilities.

◾ Checks the validity of the
parameters passed with the
request.

◾ All calls are blocking
operations.

FirecREST ∣ 13



Microservice Architecture

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST

Delegation microservice

◾ Creates a short-lived SSH
certificate to be used for
user authentication.

◾ These certificates are
created for the given
combination of username,
shell command and
arguments.

FirecREST ∣ 14



Microservice Architecture

Object 
Storage

Web

Gateway

Tasks Storage

Compute

Status

Delegation

Utilities

Cluster
Node IAM 

Internet facing
Gateway

API
microservices

Core
services

ssh connection 
https/REST ◾ The Utilities microservice

uses the SSH certificate to
log in to a Cluster node.

◾ Parses the output of the
command.

◾ Returns a json object to the
client.

FirecREST ∣ 15



Microservice Architecture

Other microservices of FirecREST:
◾ Compute: Non-blocking calls to workload manager for
submitting/querying/canceling jobs.

◾ Storage: Non-blocking calls to high-performance storage services.

◾ Tasks: Keeps track of the tasks that are created during asynchronous
calls.

◾ Status: Provides information on services and infrastructure.

FirecREST ∣ 16



Advanced FirecREST Workflows
Compute Microservice

Every time FirecREST interacts with the scheduler, it is creating a task
resource.

◾ To submit/query/cancel a job the client makes the appropriate request
to the Compute microservice.

◾ It gets a response immediately with the newly created task.

◾ The task can be used to track the status of the request in an
asynchronous way.

FirecREST ∣ 17



Advanced FirecREST Workflows
Storage Microservice - External transfers

◾ A staging area is used: Object Storage.

◾ The client will upload/download the file to/from this area.

◾ The requests from the client to FirecREST aim to get the url to this
staging area.

◾ This allows FirecREST to be responsive and lightweight, since it
delegates the large transfers to a service that is more suitable for this.

FirecREST ∣ 18



Advanced FirecREST Workflows
Storage Microservice - Internal transfers

◾ For small files’ transfers you can simply use the Utilities Microservice.

◾ The maximum file size for data transfers through Utilities is
configurable and you can get it from the Status Microservice.

◾ FirecREST has configurable time limit for all commands, so for larger
files you will have to use the dedicated WLM queue for internal data
transfers.

◾ FirecREST will create the job script and submit it based on the
request’s arguments to Storage Microservice.

FirecREST ∣ 19



Important components of the system



Kong API Gateway

◾ Open-source microservice API Gateway

◾ Optimized for distributed architecture.

◾ The Kong server is built on NGINX.

FirecREST ∣ 21



Kong
Configuration

◾ Each microservice is redirected to a different path.

◾ Kong’s configuration needs to hold the public key used to verify the
JWT tokens.
◾ Plugins:

– jwt
– request-termination
– rate-limiting
– zipkin (for integration with Jaeger)

FirecREST ∣ 22



Delegation microservice (Certificator)

◾ FirecREST has to use the JWT access token and create a short-lived
SSH certificate before executing the command of the user.

◾ This microservice acts as a certificate authority that can issue SSH
certificates for the users of the system.

◾ The certificate is valid for a short time, for the username that is on the
token and only for this command.

FirecREST ∣ 23



Delegation microservice (Certificator)
Configuration of the Delegation microservice

◾ System administrators of the system have to create a pair of
Certificate Authority (CA) keys.
◾ Delegation microservice will need the private key in order to create
SSH certificates for the machine.
◾ The cluster node will need the public key to validate the certificates.
◾ The certificates that are created are created for a ”dummy” key, that is
used by the microservices and in this way only the microservices can
use these keys.

FirecREST ∣ 24



Delegation microservice (Certificator)
How is the command executed on the machine node

In the system nodes we don’t immediately run the command but set
ForceCommand in sshd_config and run the command through a filter and
logging wrapper script.
This script:
◾ Validates the certificate type.
◾ Validates that the certificate signature.
◾ Checks that this command is one the allowed ones.
◾ Finally executes the command if everything was okay.
◾ Logs every step.

FirecREST ∣ 25



IAM Layer

Integration with the IAM layer:

◾ FirecREST verifies the signature of the token using
Keycloak’s public key.

◾ FirecREST can check for a custom scope in the
token, to make sure this token belongs to a
FirecREST client.

FirecREST ∣ 26



IAM Layer

Supported OIDC workflows:

◾ Authorization Code Flow

◾ Authorization Code Flow with Proof
Key for Code Exchange (PKCE)

◾ Client-credentials Flow

FirecREST ∣ 27



Open Policy Agent (OPA)

◾ It is an agent that can be used to authorize
fine-grained access to specific resources in a
RESTful API environment.

◾ The idea behind the integration of OPA with
FirecREST is to adapt access to microservices,
endpoints, and systems in a more secure and
flexible way.

FirecREST ∣ 28



Jaeger

◾ One request can trigger actions in
multiple microservices.
◾ Jaeger is an open-source tracing
system for distributed microservices.
◾ The Gateway needs to add an
identifier to each new request.
◾ Microservices have to propagate this
identifier in every request.
◾ We log this identifier with every
command in the cluster.

FirecREST ∣ 29



Jaeger

FirecREST ∣ 30



Jaeger

FirecREST ∣ 31



Deployment at CSCS



Deployment at CSCS

◾ Only Kong is open to the users.
◾ /users filesystem is not mounted.
◾ Kong can have rate limiters.
◾ HTTPS between microservices.
◾ Network rules between micro services.
◾ OPA is used for to deny access to normal users in the TDS
environment.

FirecREST ∣ 33



Where to find more information

◾ The complete API: https://firecrest-api.cscs.ch/
◾ Source on Github: https://github.com/eth-cscs/firecrest/
It includes a template client in Python and a demo environment in
Docker.
◾ Documentation page and examples: https://firecrest.readthedocs.io
◾ Python library for the API: https://github.com/ekouts/pyfirecrest
◾ EuroCC page: https://products.cscs.ch/firecrest/

FirecREST ∣ 34

https://firecrest-api.cscs.ch/
https://github.com/eth-cscs/firecrest/
https://firecrest.readthedocs.io
https://github.com/ekouts/pyfirecrest
https://products.cscs.ch/firecrest/


Thank you for your attention!


	Firecrest in a Nutshell
	Requirements of the system
	Microservice Architecture
	Important components of the system
	Deployment at CSCS

