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Who we are?

2



15/03/2022

2

Why, what and how?

Project scope: 
conduct research in the area of “Machine learning to augment 
shared knowledge in federated privacy-preserving scenarios”.

Taken from the Abstract: 
By the end of the project, MUSKETEER aims to create a validated, federated, privacy-
preserving machine learning platform tested on industrial data that is inter-operable, 
scalable and efficient enough to be deployed in real use cases. MUSKETEER aims to 
alleviate data sharing barriers by providing secure, scalable and privacy-preserving 
analytics over decentralized datasets using machine learning. 
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Development methodology

´ Emphasis on early integration of development efforts and ongoing regular 
integration.

´ Github for ML algorithm collaboration, 18 repositories.

´ Build on open standards and products and contribute to the open-source 
community.

´ Dedicated cloud instances per use case.
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Poisoning Attacks

´ Compromise data collection or the parameters of the model.

´ The attacker subverts the learning process for the machine learning 
system.

´ Degrades or manipulate the performance of the system.

Possible attack scenarios in federated learning settings:
´ Applications that rely on untrusted datasets.

´ Data from some of the participants is crowdsourced.
´ Applications where data curation is not always possible.

´ Scenarios where some of the participants want to compromise the 
trained model. 
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Evasion attacks
´ Evasion attacks threaten the deployment scenarios of machine 

learning systems
´ Adversaries can supply corrupted inputs to alter model behavior 

at test time

´ Deep Learning models have been found to be vulnerable to 
such adversarial examples

´ Popular examples are found in high-dimensional settings like 
images where the resulting adversarial examples are 
imperceptibly different from their original counterparts

´ Models learnt from Federated Learning systems fail to correctly 
predict for adversarial examples

We implemented effective mechanisms to detect malicious or 
faulty users and characterise their behaviour.
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´ POM1 (ARAMIS): equivalent to standard Federated Learning (FL)
´ POM2 (ATHOS): FL with encrypted aggregation (shared key)
´ POM3 (PORTHOS): FL with encrypted aggregation (different keys)
´ POM4 (ROCHEFORT): Data is encrypted (HE) and outsourced, all 

computations at the aggregator (+cryptonode)
´ POM5 (deWINTER): Model is encrypted (HE), aggregator and  

workers cooperate to update the model
´ POM6 (RICHELIEU): No encryption is used, model update relies on 

secure protocols/computations

8 Privacy Operation Modes (POMs)
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Simple guide to select the POM

• Operative aspects:

• Q1: Do I need to protect the model?
• Q2: Who gets the trained model?
• Q3: Do workers trust each other?
• Q4: Avoid encryption?
• Q5: Can I run a non-colluding 

cryptoprocessor?

• Other requirements:

• Computational, Transmission, Storage
• Worker participation
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Gal Weiss, galw@ibm.com; HTTPS://MUSKETEER.EU
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